| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpcxpadd | GIF version | ||
| Description: Sum of exponents law for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 13-Jun-2024.) |
| Ref | Expression |
|---|---|
| rpcxpadd | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 + 𝐶)) = ((𝐴↑𝑐𝐵) · (𝐴↑𝑐𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1001 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 2 | simp3 1002 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ) | |
| 3 | relogcl 15378 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | |
| 4 | 3 | 3ad2ant1 1021 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (log‘𝐴) ∈ ℝ) |
| 5 | 4 | recnd 8108 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (log‘𝐴) ∈ ℂ) |
| 6 | 1, 2, 5 | adddird 8105 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐶) · (log‘𝐴)) = ((𝐵 · (log‘𝐴)) + (𝐶 · (log‘𝐴)))) |
| 7 | 6 | fveq2d 5587 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (exp‘((𝐵 + 𝐶) · (log‘𝐴))) = (exp‘((𝐵 · (log‘𝐴)) + (𝐶 · (log‘𝐴))))) |
| 8 | 1, 5 | mulcld 8100 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · (log‘𝐴)) ∈ ℂ) |
| 9 | 2, 5 | mulcld 8100 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 · (log‘𝐴)) ∈ ℂ) |
| 10 | efadd 12030 | . . . 4 ⊢ (((𝐵 · (log‘𝐴)) ∈ ℂ ∧ (𝐶 · (log‘𝐴)) ∈ ℂ) → (exp‘((𝐵 · (log‘𝐴)) + (𝐶 · (log‘𝐴)))) = ((exp‘(𝐵 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐴))))) | |
| 11 | 8, 9, 10 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (exp‘((𝐵 · (log‘𝐴)) + (𝐶 · (log‘𝐴)))) = ((exp‘(𝐵 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐴))))) |
| 12 | 7, 11 | eqtrd 2239 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (exp‘((𝐵 + 𝐶) · (log‘𝐴))) = ((exp‘(𝐵 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐴))))) |
| 13 | simp1 1000 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℝ+) | |
| 14 | 1, 2 | addcld 8099 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 + 𝐶) ∈ ℂ) |
| 15 | rpcxpef 15410 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ (𝐵 + 𝐶) ∈ ℂ) → (𝐴↑𝑐(𝐵 + 𝐶)) = (exp‘((𝐵 + 𝐶) · (log‘𝐴)))) | |
| 16 | 13, 14, 15 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 + 𝐶)) = (exp‘((𝐵 + 𝐶) · (log‘𝐴)))) |
| 17 | rpcxpef 15410 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | |
| 18 | 13, 1, 17 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
| 19 | rpcxpef 15410 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴)))) | |
| 20 | 13, 2, 19 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴)))) |
| 21 | 18, 20 | oveq12d 5969 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴↑𝑐𝐵) · (𝐴↑𝑐𝐶)) = ((exp‘(𝐵 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐴))))) |
| 22 | 12, 16, 21 | 3eqtr4d 2249 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 + 𝐶)) = ((𝐴↑𝑐𝐵) · (𝐴↑𝑐𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5276 (class class class)co 5951 ℂcc 7930 ℝcr 7931 + caddc 7935 · cmul 7937 ℝ+crp 9782 expce 11997 logclog 15372 ↑𝑐ccxp 15373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 ax-pre-suploc 8053 ax-addf 8054 ax-mulf 8055 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-disj 4024 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-of 6165 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-frec 6484 df-1o 6509 df-oadd 6513 df-er 6627 df-map 6744 df-pm 6745 df-en 6835 df-dom 6836 df-fin 6837 df-sup 7093 df-inf 7094 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-xneg 9901 df-xadd 9902 df-ioo 10021 df-ico 10023 df-icc 10024 df-fz 10138 df-fzo 10272 df-seqfrec 10600 df-exp 10691 df-fac 10878 df-bc 10900 df-ihash 10928 df-shft 11170 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-clim 11634 df-sumdc 11709 df-ef 12003 df-e 12004 df-rest 13117 df-topgen 13136 df-psmet 14349 df-xmet 14350 df-met 14351 df-bl 14352 df-mopn 14353 df-top 14514 df-topon 14527 df-bases 14559 df-ntr 14612 df-cn 14704 df-cnp 14705 df-tx 14769 df-cncf 15087 df-limced 15172 df-dvap 15173 df-relog 15374 df-rpcxp 15375 |
| This theorem is referenced by: rpcxpp1 15422 rpcxpneg 15423 rpcxpsub 15424 rpcxpmul2 15429 rpcxpsqrt 15438 |
| Copyright terms: Public domain | W3C validator |