ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaddnq GIF version

Theorem ltaddnq 7474
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
ltaddnq ((𝐴Q𝐵Q) → 𝐴 <Q (𝐴 +Q 𝐵))

Proof of Theorem ltaddnq
Dummy variables 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2nq 7473 . . . . . . 7 1Q <Q (1Q +Q 1Q)
2 1nq 7433 . . . . . . . 8 1QQ
3 addclnq 7442 . . . . . . . . 9 ((1QQ ∧ 1QQ) → (1Q +Q 1Q) ∈ Q)
42, 2, 3mp2an 426 . . . . . . . 8 (1Q +Q 1Q) ∈ Q
5 ltmnqg 7468 . . . . . . . 8 ((1QQ ∧ (1Q +Q 1Q) ∈ Q𝐵Q) → (1Q <Q (1Q +Q 1Q) ↔ (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q))))
62, 4, 5mp3an12 1338 . . . . . . 7 (𝐵Q → (1Q <Q (1Q +Q 1Q) ↔ (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q))))
71, 6mpbii 148 . . . . . 6 (𝐵Q → (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q)))
8 mulidnq 7456 . . . . . 6 (𝐵Q → (𝐵 ·Q 1Q) = 𝐵)
9 distrnqg 7454 . . . . . . . 8 ((𝐵Q ∧ 1QQ ∧ 1QQ) → (𝐵 ·Q (1Q +Q 1Q)) = ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q)))
102, 2, 9mp3an23 1340 . . . . . . 7 (𝐵Q → (𝐵 ·Q (1Q +Q 1Q)) = ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q)))
118, 8oveq12d 5940 . . . . . . 7 (𝐵Q → ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q)) = (𝐵 +Q 𝐵))
1210, 11eqtrd 2229 . . . . . 6 (𝐵Q → (𝐵 ·Q (1Q +Q 1Q)) = (𝐵 +Q 𝐵))
137, 8, 123brtr3d 4064 . . . . 5 (𝐵Q𝐵 <Q (𝐵 +Q 𝐵))
1413adantl 277 . . . 4 ((𝐴Q𝐵Q) → 𝐵 <Q (𝐵 +Q 𝐵))
15 simpr 110 . . . . 5 ((𝐴Q𝐵Q) → 𝐵Q)
16 addclnq 7442 . . . . . . 7 ((𝐵Q𝐵Q) → (𝐵 +Q 𝐵) ∈ Q)
1716anidms 397 . . . . . 6 (𝐵Q → (𝐵 +Q 𝐵) ∈ Q)
1817adantl 277 . . . . 5 ((𝐴Q𝐵Q) → (𝐵 +Q 𝐵) ∈ Q)
19 simpl 109 . . . . 5 ((𝐴Q𝐵Q) → 𝐴Q)
20 ltanqg 7467 . . . . 5 ((𝐵Q ∧ (𝐵 +Q 𝐵) ∈ Q𝐴Q) → (𝐵 <Q (𝐵 +Q 𝐵) ↔ (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵))))
2115, 18, 19, 20syl3anc 1249 . . . 4 ((𝐴Q𝐵Q) → (𝐵 <Q (𝐵 +Q 𝐵) ↔ (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵))))
2214, 21mpbid 147 . . 3 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵)))
23 addcomnqg 7448 . . 3 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴))
24 addcomnqg 7448 . . . . 5 ((𝑟Q𝑠Q) → (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟))
2524adantl 277 . . . 4 (((𝐴Q𝐵Q) ∧ (𝑟Q𝑠Q)) → (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟))
26 addassnqg 7449 . . . . 5 ((𝑟Q𝑠Q𝑡Q) → ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡)))
2726adantl 277 . . . 4 (((𝐴Q𝐵Q) ∧ (𝑟Q𝑠Q𝑡Q)) → ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡)))
2819, 15, 15, 25, 27caov12d 6105 . . 3 ((𝐴Q𝐵Q) → (𝐴 +Q (𝐵 +Q 𝐵)) = (𝐵 +Q (𝐴 +Q 𝐵)))
2922, 23, 283brtr3d 4064 . 2 ((𝐴Q𝐵Q) → (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵)))
30 addclnq 7442 . . 3 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ Q)
31 ltanqg 7467 . . 3 ((𝐴Q ∧ (𝐴 +Q 𝐵) ∈ Q𝐵Q) → (𝐴 <Q (𝐴 +Q 𝐵) ↔ (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵))))
3219, 30, 15, 31syl3anc 1249 . 2 ((𝐴Q𝐵Q) → (𝐴 <Q (𝐴 +Q 𝐵) ↔ (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵))))
3329, 32mpbird 167 1 ((𝐴Q𝐵Q) → 𝐴 <Q (𝐴 +Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4033  (class class class)co 5922  Qcnq 7347  1Qc1q 7348   +Q cplq 7349   ·Q cmq 7350   <Q cltq 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-ltnqqs 7420
This theorem is referenced by:  ltexnqq  7475  nsmallnqq  7479  subhalfnqq  7481  ltbtwnnqq  7482  prarloclemarch2  7486  ltexprlemm  7667  ltexprlemopl  7668  addcanprleml  7681  addcanprlemu  7682  recexprlemm  7691  cauappcvgprlemm  7712  cauappcvgprlemopl  7713  cauappcvgprlem2  7727  caucvgprlemnkj  7733  caucvgprlemnbj  7734  caucvgprlemm  7735  caucvgprlemopl  7736  caucvgprprlemnjltk  7758  caucvgprprlemopl  7764  suplocexprlemmu  7785
  Copyright terms: Public domain W3C validator