| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltaddnq | GIF version | ||
| Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| ltaddnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2nq 7561 | . . . . . . 7 ⊢ 1Q <Q (1Q +Q 1Q) | |
| 2 | 1nq 7521 | . . . . . . . 8 ⊢ 1Q ∈ Q | |
| 3 | addclnq 7530 | . . . . . . . . 9 ⊢ ((1Q ∈ Q ∧ 1Q ∈ Q) → (1Q +Q 1Q) ∈ Q) | |
| 4 | 2, 2, 3 | mp2an 426 | . . . . . . . 8 ⊢ (1Q +Q 1Q) ∈ Q |
| 5 | ltmnqg 7556 | . . . . . . . 8 ⊢ ((1Q ∈ Q ∧ (1Q +Q 1Q) ∈ Q ∧ 𝐵 ∈ Q) → (1Q <Q (1Q +Q 1Q) ↔ (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q)))) | |
| 6 | 2, 4, 5 | mp3an12 1342 | . . . . . . 7 ⊢ (𝐵 ∈ Q → (1Q <Q (1Q +Q 1Q) ↔ (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q)))) |
| 7 | 1, 6 | mpbii 148 | . . . . . 6 ⊢ (𝐵 ∈ Q → (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q))) |
| 8 | mulidnq 7544 | . . . . . 6 ⊢ (𝐵 ∈ Q → (𝐵 ·Q 1Q) = 𝐵) | |
| 9 | distrnqg 7542 | . . . . . . . 8 ⊢ ((𝐵 ∈ Q ∧ 1Q ∈ Q ∧ 1Q ∈ Q) → (𝐵 ·Q (1Q +Q 1Q)) = ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q))) | |
| 10 | 2, 2, 9 | mp3an23 1344 | . . . . . . 7 ⊢ (𝐵 ∈ Q → (𝐵 ·Q (1Q +Q 1Q)) = ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q))) |
| 11 | 8, 8 | oveq12d 5992 | . . . . . . 7 ⊢ (𝐵 ∈ Q → ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q)) = (𝐵 +Q 𝐵)) |
| 12 | 10, 11 | eqtrd 2242 | . . . . . 6 ⊢ (𝐵 ∈ Q → (𝐵 ·Q (1Q +Q 1Q)) = (𝐵 +Q 𝐵)) |
| 13 | 7, 8, 12 | 3brtr3d 4093 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 <Q (𝐵 +Q 𝐵)) |
| 14 | 13 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐵 <Q (𝐵 +Q 𝐵)) |
| 15 | simpr 110 | . . . . 5 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐵 ∈ Q) | |
| 16 | addclnq 7530 | . . . . . . 7 ⊢ ((𝐵 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 +Q 𝐵) ∈ Q) | |
| 17 | 16 | anidms 397 | . . . . . 6 ⊢ (𝐵 ∈ Q → (𝐵 +Q 𝐵) ∈ Q) |
| 18 | 17 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 +Q 𝐵) ∈ Q) |
| 19 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 ∈ Q) | |
| 20 | ltanqg 7555 | . . . . 5 ⊢ ((𝐵 ∈ Q ∧ (𝐵 +Q 𝐵) ∈ Q ∧ 𝐴 ∈ Q) → (𝐵 <Q (𝐵 +Q 𝐵) ↔ (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵)))) | |
| 21 | 15, 18, 19, 20 | syl3anc 1252 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 <Q (𝐵 +Q 𝐵) ↔ (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵)))) |
| 22 | 14, 21 | mpbid 147 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵))) |
| 23 | addcomnqg 7536 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴)) | |
| 24 | addcomnqg 7536 | . . . . 5 ⊢ ((𝑟 ∈ Q ∧ 𝑠 ∈ Q) → (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟)) | |
| 25 | 24 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝑟 ∈ Q ∧ 𝑠 ∈ Q)) → (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟)) |
| 26 | addassnqg 7537 | . . . . 5 ⊢ ((𝑟 ∈ Q ∧ 𝑠 ∈ Q ∧ 𝑡 ∈ Q) → ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡))) | |
| 27 | 26 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝑟 ∈ Q ∧ 𝑠 ∈ Q ∧ 𝑡 ∈ Q)) → ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡))) |
| 28 | 19, 15, 15, 25, 27 | caov12d 6158 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q (𝐵 +Q 𝐵)) = (𝐵 +Q (𝐴 +Q 𝐵))) |
| 29 | 22, 23, 28 | 3brtr3d 4093 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵))) |
| 30 | addclnq 7530 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) ∈ Q) | |
| 31 | ltanqg 7555 | . . 3 ⊢ ((𝐴 ∈ Q ∧ (𝐴 +Q 𝐵) ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q (𝐴 +Q 𝐵) ↔ (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵)))) | |
| 32 | 19, 30, 15, 31 | syl3anc 1252 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q (𝐴 +Q 𝐵) ↔ (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵)))) |
| 33 | 29, 32 | mpbird 167 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 (class class class)co 5974 Qcnq 7435 1Qc1q 7436 +Q cplq 7437 ·Q cmq 7438 <Q cltq 7440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-eprel 4357 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-1o 6532 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-pli 7460 df-mi 7461 df-lti 7462 df-plpq 7499 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-plqqs 7504 df-mqqs 7505 df-1nqqs 7506 df-ltnqqs 7508 |
| This theorem is referenced by: ltexnqq 7563 nsmallnqq 7567 subhalfnqq 7569 ltbtwnnqq 7570 prarloclemarch2 7574 ltexprlemm 7755 ltexprlemopl 7756 addcanprleml 7769 addcanprlemu 7770 recexprlemm 7779 cauappcvgprlemm 7800 cauappcvgprlemopl 7801 cauappcvgprlem2 7815 caucvgprlemnkj 7821 caucvgprlemnbj 7822 caucvgprlemm 7823 caucvgprlemopl 7824 caucvgprprlemnjltk 7846 caucvgprprlemopl 7852 suplocexprlemmu 7873 |
| Copyright terms: Public domain | W3C validator |