ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaddnq GIF version

Theorem ltaddnq 7208
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
ltaddnq ((𝐴Q𝐵Q) → 𝐴 <Q (𝐴 +Q 𝐵))

Proof of Theorem ltaddnq
Dummy variables 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2nq 7207 . . . . . . 7 1Q <Q (1Q +Q 1Q)
2 1nq 7167 . . . . . . . 8 1QQ
3 addclnq 7176 . . . . . . . . 9 ((1QQ ∧ 1QQ) → (1Q +Q 1Q) ∈ Q)
42, 2, 3mp2an 422 . . . . . . . 8 (1Q +Q 1Q) ∈ Q
5 ltmnqg 7202 . . . . . . . 8 ((1QQ ∧ (1Q +Q 1Q) ∈ Q𝐵Q) → (1Q <Q (1Q +Q 1Q) ↔ (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q))))
62, 4, 5mp3an12 1305 . . . . . . 7 (𝐵Q → (1Q <Q (1Q +Q 1Q) ↔ (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q))))
71, 6mpbii 147 . . . . . 6 (𝐵Q → (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q)))
8 mulidnq 7190 . . . . . 6 (𝐵Q → (𝐵 ·Q 1Q) = 𝐵)
9 distrnqg 7188 . . . . . . . 8 ((𝐵Q ∧ 1QQ ∧ 1QQ) → (𝐵 ·Q (1Q +Q 1Q)) = ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q)))
102, 2, 9mp3an23 1307 . . . . . . 7 (𝐵Q → (𝐵 ·Q (1Q +Q 1Q)) = ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q)))
118, 8oveq12d 5785 . . . . . . 7 (𝐵Q → ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q)) = (𝐵 +Q 𝐵))
1210, 11eqtrd 2170 . . . . . 6 (𝐵Q → (𝐵 ·Q (1Q +Q 1Q)) = (𝐵 +Q 𝐵))
137, 8, 123brtr3d 3954 . . . . 5 (𝐵Q𝐵 <Q (𝐵 +Q 𝐵))
1413adantl 275 . . . 4 ((𝐴Q𝐵Q) → 𝐵 <Q (𝐵 +Q 𝐵))
15 simpr 109 . . . . 5 ((𝐴Q𝐵Q) → 𝐵Q)
16 addclnq 7176 . . . . . . 7 ((𝐵Q𝐵Q) → (𝐵 +Q 𝐵) ∈ Q)
1716anidms 394 . . . . . 6 (𝐵Q → (𝐵 +Q 𝐵) ∈ Q)
1817adantl 275 . . . . 5 ((𝐴Q𝐵Q) → (𝐵 +Q 𝐵) ∈ Q)
19 simpl 108 . . . . 5 ((𝐴Q𝐵Q) → 𝐴Q)
20 ltanqg 7201 . . . . 5 ((𝐵Q ∧ (𝐵 +Q 𝐵) ∈ Q𝐴Q) → (𝐵 <Q (𝐵 +Q 𝐵) ↔ (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵))))
2115, 18, 19, 20syl3anc 1216 . . . 4 ((𝐴Q𝐵Q) → (𝐵 <Q (𝐵 +Q 𝐵) ↔ (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵))))
2214, 21mpbid 146 . . 3 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵)))
23 addcomnqg 7182 . . 3 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴))
24 addcomnqg 7182 . . . . 5 ((𝑟Q𝑠Q) → (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟))
2524adantl 275 . . . 4 (((𝐴Q𝐵Q) ∧ (𝑟Q𝑠Q)) → (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟))
26 addassnqg 7183 . . . . 5 ((𝑟Q𝑠Q𝑡Q) → ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡)))
2726adantl 275 . . . 4 (((𝐴Q𝐵Q) ∧ (𝑟Q𝑠Q𝑡Q)) → ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡)))
2819, 15, 15, 25, 27caov12d 5945 . . 3 ((𝐴Q𝐵Q) → (𝐴 +Q (𝐵 +Q 𝐵)) = (𝐵 +Q (𝐴 +Q 𝐵)))
2922, 23, 283brtr3d 3954 . 2 ((𝐴Q𝐵Q) → (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵)))
30 addclnq 7176 . . 3 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ Q)
31 ltanqg 7201 . . 3 ((𝐴Q ∧ (𝐴 +Q 𝐵) ∈ Q𝐵Q) → (𝐴 <Q (𝐴 +Q 𝐵) ↔ (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵))))
3219, 30, 15, 31syl3anc 1216 . 2 ((𝐴Q𝐵Q) → (𝐴 <Q (𝐴 +Q 𝐵) ↔ (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵))))
3329, 32mpbird 166 1 ((𝐴Q𝐵Q) → 𝐴 <Q (𝐴 +Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480   class class class wbr 3924  (class class class)co 5767  Qcnq 7081  1Qc1q 7082   +Q cplq 7083   ·Q cmq 7084   <Q cltq 7086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-ltnqqs 7154
This theorem is referenced by:  ltexnqq  7209  nsmallnqq  7213  subhalfnqq  7215  ltbtwnnqq  7216  prarloclemarch2  7220  ltexprlemm  7401  ltexprlemopl  7402  addcanprleml  7415  addcanprlemu  7416  recexprlemm  7425  cauappcvgprlemm  7446  cauappcvgprlemopl  7447  cauappcvgprlem2  7461  caucvgprlemnkj  7467  caucvgprlemnbj  7468  caucvgprlemm  7469  caucvgprlemopl  7470  caucvgprprlemnjltk  7492  caucvgprprlemopl  7498  suplocexprlemmu  7519
  Copyright terms: Public domain W3C validator