![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltaddnq | GIF version |
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
ltaddnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2nq 7115 | . . . . . . 7 ⊢ 1Q <Q (1Q +Q 1Q) | |
2 | 1nq 7075 | . . . . . . . 8 ⊢ 1Q ∈ Q | |
3 | addclnq 7084 | . . . . . . . . 9 ⊢ ((1Q ∈ Q ∧ 1Q ∈ Q) → (1Q +Q 1Q) ∈ Q) | |
4 | 2, 2, 3 | mp2an 420 | . . . . . . . 8 ⊢ (1Q +Q 1Q) ∈ Q |
5 | ltmnqg 7110 | . . . . . . . 8 ⊢ ((1Q ∈ Q ∧ (1Q +Q 1Q) ∈ Q ∧ 𝐵 ∈ Q) → (1Q <Q (1Q +Q 1Q) ↔ (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q)))) | |
6 | 2, 4, 5 | mp3an12 1273 | . . . . . . 7 ⊢ (𝐵 ∈ Q → (1Q <Q (1Q +Q 1Q) ↔ (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q)))) |
7 | 1, 6 | mpbii 147 | . . . . . 6 ⊢ (𝐵 ∈ Q → (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q))) |
8 | mulidnq 7098 | . . . . . 6 ⊢ (𝐵 ∈ Q → (𝐵 ·Q 1Q) = 𝐵) | |
9 | distrnqg 7096 | . . . . . . . 8 ⊢ ((𝐵 ∈ Q ∧ 1Q ∈ Q ∧ 1Q ∈ Q) → (𝐵 ·Q (1Q +Q 1Q)) = ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q))) | |
10 | 2, 2, 9 | mp3an23 1275 | . . . . . . 7 ⊢ (𝐵 ∈ Q → (𝐵 ·Q (1Q +Q 1Q)) = ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q))) |
11 | 8, 8 | oveq12d 5724 | . . . . . . 7 ⊢ (𝐵 ∈ Q → ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q)) = (𝐵 +Q 𝐵)) |
12 | 10, 11 | eqtrd 2132 | . . . . . 6 ⊢ (𝐵 ∈ Q → (𝐵 ·Q (1Q +Q 1Q)) = (𝐵 +Q 𝐵)) |
13 | 7, 8, 12 | 3brtr3d 3904 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 <Q (𝐵 +Q 𝐵)) |
14 | 13 | adantl 273 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐵 <Q (𝐵 +Q 𝐵)) |
15 | simpr 109 | . . . . 5 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐵 ∈ Q) | |
16 | addclnq 7084 | . . . . . . 7 ⊢ ((𝐵 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 +Q 𝐵) ∈ Q) | |
17 | 16 | anidms 392 | . . . . . 6 ⊢ (𝐵 ∈ Q → (𝐵 +Q 𝐵) ∈ Q) |
18 | 17 | adantl 273 | . . . . 5 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 +Q 𝐵) ∈ Q) |
19 | simpl 108 | . . . . 5 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 ∈ Q) | |
20 | ltanqg 7109 | . . . . 5 ⊢ ((𝐵 ∈ Q ∧ (𝐵 +Q 𝐵) ∈ Q ∧ 𝐴 ∈ Q) → (𝐵 <Q (𝐵 +Q 𝐵) ↔ (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵)))) | |
21 | 15, 18, 19, 20 | syl3anc 1184 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 <Q (𝐵 +Q 𝐵) ↔ (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵)))) |
22 | 14, 21 | mpbid 146 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵))) |
23 | addcomnqg 7090 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴)) | |
24 | addcomnqg 7090 | . . . . 5 ⊢ ((𝑟 ∈ Q ∧ 𝑠 ∈ Q) → (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟)) | |
25 | 24 | adantl 273 | . . . 4 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝑟 ∈ Q ∧ 𝑠 ∈ Q)) → (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟)) |
26 | addassnqg 7091 | . . . . 5 ⊢ ((𝑟 ∈ Q ∧ 𝑠 ∈ Q ∧ 𝑡 ∈ Q) → ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡))) | |
27 | 26 | adantl 273 | . . . 4 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝑟 ∈ Q ∧ 𝑠 ∈ Q ∧ 𝑡 ∈ Q)) → ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡))) |
28 | 19, 15, 15, 25, 27 | caov12d 5884 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q (𝐵 +Q 𝐵)) = (𝐵 +Q (𝐴 +Q 𝐵))) |
29 | 22, 23, 28 | 3brtr3d 3904 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵))) |
30 | addclnq 7084 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) ∈ Q) | |
31 | ltanqg 7109 | . . 3 ⊢ ((𝐴 ∈ Q ∧ (𝐴 +Q 𝐵) ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q (𝐴 +Q 𝐵) ↔ (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵)))) | |
32 | 19, 30, 15, 31 | syl3anc 1184 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q (𝐴 +Q 𝐵) ↔ (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵)))) |
33 | 29, 32 | mpbird 166 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 930 = wceq 1299 ∈ wcel 1448 class class class wbr 3875 (class class class)co 5706 Qcnq 6989 1Qc1q 6990 +Q cplq 6991 ·Q cmq 6992 <Q cltq 6994 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-iinf 4440 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-tr 3967 df-eprel 4149 df-id 4153 df-iord 4226 df-on 4228 df-suc 4231 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-recs 6132 df-irdg 6197 df-1o 6243 df-oadd 6247 df-omul 6248 df-er 6359 df-ec 6361 df-qs 6365 df-ni 7013 df-pli 7014 df-mi 7015 df-lti 7016 df-plpq 7053 df-mpq 7054 df-enq 7056 df-nqqs 7057 df-plqqs 7058 df-mqqs 7059 df-1nqqs 7060 df-ltnqqs 7062 |
This theorem is referenced by: ltexnqq 7117 nsmallnqq 7121 subhalfnqq 7123 ltbtwnnqq 7124 prarloclemarch2 7128 ltexprlemm 7309 ltexprlemopl 7310 addcanprleml 7323 addcanprlemu 7324 recexprlemm 7333 cauappcvgprlemm 7354 cauappcvgprlemopl 7355 cauappcvgprlem2 7369 caucvgprlemnkj 7375 caucvgprlemnbj 7376 caucvgprlemm 7377 caucvgprlemopl 7378 caucvgprprlemnjltk 7400 caucvgprprlemopl 7406 |
Copyright terms: Public domain | W3C validator |