| Step | Hyp | Ref
 | Expression | 
| 1 |   | mullocprlem.uqedu | 
. . . . . . 7
⊢ (𝜑 → (𝑈 ·Q 𝑄) <Q
(𝐸
·Q (𝐷 ·Q 𝑈))) | 
| 2 |   | mullocprlem.et | 
. . . . . . . . 9
⊢ (𝜑 → (𝐸 ∈ Q ∧ 𝑇 ∈
Q)) | 
| 3 | 2 | simpld 112 | 
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ Q) | 
| 4 |   | mullocprlem.duq | 
. . . . . . . . 9
⊢ (𝜑 → (𝐷 ∈ Q ∧ 𝑈 ∈
Q)) | 
| 5 | 4 | simpld 112 | 
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ Q) | 
| 6 | 4 | simprd 114 | 
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ Q) | 
| 7 |   | mulcomnqg 7450 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ (𝑥
·Q 𝑦) = (𝑦 ·Q 𝑥)) | 
| 8 | 7 | adantl 277 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
(𝑥
·Q 𝑦) = (𝑦 ·Q 𝑥)) | 
| 9 |   | mulassnqg 7451 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q
∧ 𝑧 ∈
Q) → ((𝑥
·Q 𝑦) ·Q 𝑧) = (𝑥 ·Q (𝑦
·Q 𝑧))) | 
| 10 | 9 | adantl 277 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧
𝑧 ∈ Q))
→ ((𝑥
·Q 𝑦) ·Q 𝑧) = (𝑥 ·Q (𝑦
·Q 𝑧))) | 
| 11 | 3, 5, 6, 8, 10 | caov13d 6107 | 
. . . . . . 7
⊢ (𝜑 → (𝐸 ·Q (𝐷
·Q 𝑈)) = (𝑈 ·Q (𝐷
·Q 𝐸))) | 
| 12 | 1, 11 | breqtrd 4059 | 
. . . . . 6
⊢ (𝜑 → (𝑈 ·Q 𝑄) <Q
(𝑈
·Q (𝐷 ·Q 𝐸))) | 
| 13 |   | mullocprlem.qr | 
. . . . . . . 8
⊢ (𝜑 → (𝑄 ∈ Q ∧ 𝑅 ∈
Q)) | 
| 14 | 13 | simpld 112 | 
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ Q) | 
| 15 |   | mulclnq 7443 | 
. . . . . . . 8
⊢ ((𝐷 ∈ Q ∧
𝐸 ∈ Q)
→ (𝐷
·Q 𝐸) ∈ Q) | 
| 16 | 5, 3, 15 | syl2anc 411 | 
. . . . . . 7
⊢ (𝜑 → (𝐷 ·Q 𝐸) ∈
Q) | 
| 17 |   | ltmnqg 7468 | 
. . . . . . 7
⊢ ((𝑄 ∈ Q ∧
(𝐷
·Q 𝐸) ∈ Q ∧ 𝑈 ∈ Q) →
(𝑄
<Q (𝐷 ·Q 𝐸) ↔ (𝑈 ·Q 𝑄) <Q
(𝑈
·Q (𝐷 ·Q 𝐸)))) | 
| 18 | 14, 16, 6, 17 | syl3anc 1249 | 
. . . . . 6
⊢ (𝜑 → (𝑄 <Q (𝐷
·Q 𝐸) ↔ (𝑈 ·Q 𝑄) <Q
(𝑈
·Q (𝐷 ·Q 𝐸)))) | 
| 19 | 12, 18 | mpbird 167 | 
. . . . 5
⊢ (𝜑 → 𝑄 <Q (𝐷
·Q 𝐸)) | 
| 20 | 19 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝐸 ∈ (1st ‘𝐵)) → 𝑄 <Q (𝐷
·Q 𝐸)) | 
| 21 |   | mullocprlem.ab | 
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∈ P ∧ 𝐵 ∈
P)) | 
| 22 | 21 | simpld 112 | 
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ P) | 
| 23 |   | mullocprlem.du | 
. . . . . . . 8
⊢ (𝜑 → (𝐷 ∈ (1st ‘𝐴) ∧ 𝑈 ∈ (2nd ‘𝐴))) | 
| 24 | 23 | simpld 112 | 
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) | 
| 25 | 22, 24 | jca 306 | 
. . . . . 6
⊢ (𝜑 → (𝐴 ∈ P ∧ 𝐷 ∈ (1st
‘𝐴))) | 
| 26 | 25 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐸 ∈ (1st ‘𝐵)) → (𝐴 ∈ P ∧ 𝐷 ∈ (1st
‘𝐴))) | 
| 27 | 21 | simprd 114 | 
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ P) | 
| 28 | 27 | anim1i 340 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐸 ∈ (1st ‘𝐵)) → (𝐵 ∈ P ∧ 𝐸 ∈ (1st
‘𝐵))) | 
| 29 | 14 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐸 ∈ (1st ‘𝐵)) → 𝑄 ∈ Q) | 
| 30 |   | mulnqprl 7635 | 
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐷 ∈ (1st
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐸 ∈ (1st
‘𝐵))) ∧ 𝑄 ∈ Q) →
(𝑄
<Q (𝐷 ·Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴
·P 𝐵)))) | 
| 31 | 26, 28, 29, 30 | syl21anc 1248 | 
. . . 4
⊢ ((𝜑 ∧ 𝐸 ∈ (1st ‘𝐵)) → (𝑄 <Q (𝐷
·Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴
·P 𝐵)))) | 
| 32 | 20, 31 | mpd 13 | 
. . 3
⊢ ((𝜑 ∧ 𝐸 ∈ (1st ‘𝐵)) → 𝑄 ∈ (1st ‘(𝐴
·P 𝐵))) | 
| 33 | 32 | orcd 734 | 
. 2
⊢ ((𝜑 ∧ 𝐸 ∈ (1st ‘𝐵)) → (𝑄 ∈ (1st ‘(𝐴
·P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴
·P 𝐵)))) | 
| 34 | 2 | simprd 114 | 
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ Q) | 
| 35 |   | mulcomnqg 7450 | 
. . . . . . 7
⊢ ((𝑇 ∈ Q ∧
𝑈 ∈ Q)
→ (𝑇
·Q 𝑈) = (𝑈 ·Q 𝑇)) | 
| 36 | 34, 6, 35 | syl2anc 411 | 
. . . . . 6
⊢ (𝜑 → (𝑇 ·Q 𝑈) = (𝑈 ·Q 𝑇)) | 
| 37 |   | mullocprlem.tdudr | 
. . . . . . 7
⊢ (𝜑 → (𝑇 ·Q (𝐷
·Q 𝑈)) <Q (𝐷
·Q 𝑅)) | 
| 38 |   | mulclnq 7443 | 
. . . . . . . . . 10
⊢ ((𝑇 ∈ Q ∧
𝑈 ∈ Q)
→ (𝑇
·Q 𝑈) ∈ Q) | 
| 39 | 34, 6, 38 | syl2anc 411 | 
. . . . . . . . 9
⊢ (𝜑 → (𝑇 ·Q 𝑈) ∈
Q) | 
| 40 | 13 | simprd 114 | 
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Q) | 
| 41 |   | ltmnqg 7468 | 
. . . . . . . . 9
⊢ (((𝑇
·Q 𝑈) ∈ Q ∧ 𝑅 ∈ Q ∧
𝐷 ∈ Q)
→ ((𝑇
·Q 𝑈) <Q 𝑅 ↔ (𝐷 ·Q (𝑇
·Q 𝑈)) <Q (𝐷
·Q 𝑅))) | 
| 42 | 39, 40, 5, 41 | syl3anc 1249 | 
. . . . . . . 8
⊢ (𝜑 → ((𝑇 ·Q 𝑈) <Q
𝑅 ↔ (𝐷 ·Q (𝑇
·Q 𝑈)) <Q (𝐷
·Q 𝑅))) | 
| 43 | 34, 5, 6, 8, 10 | caov12d 6105 | 
. . . . . . . . 9
⊢ (𝜑 → (𝑇 ·Q (𝐷
·Q 𝑈)) = (𝐷 ·Q (𝑇
·Q 𝑈))) | 
| 44 | 43 | breq1d 4043 | 
. . . . . . . 8
⊢ (𝜑 → ((𝑇 ·Q (𝐷
·Q 𝑈)) <Q (𝐷
·Q 𝑅) ↔ (𝐷 ·Q (𝑇
·Q 𝑈)) <Q (𝐷
·Q 𝑅))) | 
| 45 | 42, 44 | bitr4d 191 | 
. . . . . . 7
⊢ (𝜑 → ((𝑇 ·Q 𝑈) <Q
𝑅 ↔ (𝑇 ·Q (𝐷
·Q 𝑈)) <Q (𝐷
·Q 𝑅))) | 
| 46 | 37, 45 | mpbird 167 | 
. . . . . 6
⊢ (𝜑 → (𝑇 ·Q 𝑈) <Q
𝑅) | 
| 47 | 36, 46 | eqbrtrrd 4057 | 
. . . . 5
⊢ (𝜑 → (𝑈 ·Q 𝑇) <Q
𝑅) | 
| 48 | 47 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝑇 ∈ (2nd ‘𝐵)) → (𝑈 ·Q 𝑇) <Q
𝑅) | 
| 49 | 23 | simprd 114 | 
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) | 
| 50 | 22, 49 | jca 306 | 
. . . . . 6
⊢ (𝜑 → (𝐴 ∈ P ∧ 𝑈 ∈ (2nd
‘𝐴))) | 
| 51 | 50 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑇 ∈ (2nd ‘𝐵)) → (𝐴 ∈ P ∧ 𝑈 ∈ (2nd
‘𝐴))) | 
| 52 | 27 | anim1i 340 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑇 ∈ (2nd ‘𝐵)) → (𝐵 ∈ P ∧ 𝑇 ∈ (2nd
‘𝐵))) | 
| 53 | 40 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑇 ∈ (2nd ‘𝐵)) → 𝑅 ∈ Q) | 
| 54 |   | mulnqpru 7636 | 
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝑈 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝑇 ∈ (2nd
‘𝐵))) ∧ 𝑅 ∈ Q) →
((𝑈
·Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴
·P 𝐵)))) | 
| 55 | 51, 52, 53, 54 | syl21anc 1248 | 
. . . 4
⊢ ((𝜑 ∧ 𝑇 ∈ (2nd ‘𝐵)) → ((𝑈 ·Q 𝑇) <Q
𝑅 → 𝑅 ∈ (2nd ‘(𝐴
·P 𝐵)))) | 
| 56 | 48, 55 | mpd 13 | 
. . 3
⊢ ((𝜑 ∧ 𝑇 ∈ (2nd ‘𝐵)) → 𝑅 ∈ (2nd ‘(𝐴
·P 𝐵))) | 
| 57 | 56 | olcd 735 | 
. 2
⊢ ((𝜑 ∧ 𝑇 ∈ (2nd ‘𝐵)) → (𝑄 ∈ (1st ‘(𝐴
·P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴
·P 𝐵)))) | 
| 58 |   | mullocprlem.edutdu | 
. . . 4
⊢ (𝜑 → (𝐸 ·Q (𝐷
·Q 𝑈)) <Q (𝑇
·Q (𝐷 ·Q 𝑈))) | 
| 59 |   | mulclnq 7443 | 
. . . . . . 7
⊢ ((𝐷 ∈ Q ∧
𝑈 ∈ Q)
→ (𝐷
·Q 𝑈) ∈ Q) | 
| 60 | 4, 59 | syl 14 | 
. . . . . 6
⊢ (𝜑 → (𝐷 ·Q 𝑈) ∈
Q) | 
| 61 |   | ltmnqg 7468 | 
. . . . . 6
⊢ ((𝐸 ∈ Q ∧
𝑇 ∈ Q
∧ (𝐷
·Q 𝑈) ∈ Q) → (𝐸 <Q
𝑇 ↔ ((𝐷
·Q 𝑈) ·Q 𝐸) <Q
((𝐷
·Q 𝑈) ·Q 𝑇))) | 
| 62 | 3, 34, 60, 61 | syl3anc 1249 | 
. . . . 5
⊢ (𝜑 → (𝐸 <Q 𝑇 ↔ ((𝐷 ·Q 𝑈)
·Q 𝐸) <Q ((𝐷
·Q 𝑈) ·Q 𝑇))) | 
| 63 |   | mulcomnqg 7450 | 
. . . . . . 7
⊢ (((𝐷
·Q 𝑈) ∈ Q ∧ 𝐸 ∈ Q) →
((𝐷
·Q 𝑈) ·Q 𝐸) = (𝐸 ·Q (𝐷
·Q 𝑈))) | 
| 64 | 60, 3, 63 | syl2anc 411 | 
. . . . . 6
⊢ (𝜑 → ((𝐷 ·Q 𝑈)
·Q 𝐸) = (𝐸 ·Q (𝐷
·Q 𝑈))) | 
| 65 |   | mulcomnqg 7450 | 
. . . . . . 7
⊢ (((𝐷
·Q 𝑈) ∈ Q ∧ 𝑇 ∈ Q) →
((𝐷
·Q 𝑈) ·Q 𝑇) = (𝑇 ·Q (𝐷
·Q 𝑈))) | 
| 66 | 60, 34, 65 | syl2anc 411 | 
. . . . . 6
⊢ (𝜑 → ((𝐷 ·Q 𝑈)
·Q 𝑇) = (𝑇 ·Q (𝐷
·Q 𝑈))) | 
| 67 | 64, 66 | breq12d 4046 | 
. . . . 5
⊢ (𝜑 → (((𝐷 ·Q 𝑈)
·Q 𝐸) <Q ((𝐷
·Q 𝑈) ·Q 𝑇) ↔ (𝐸 ·Q (𝐷
·Q 𝑈)) <Q (𝑇
·Q (𝐷 ·Q 𝑈)))) | 
| 68 | 62, 67 | bitrd 188 | 
. . . 4
⊢ (𝜑 → (𝐸 <Q 𝑇 ↔ (𝐸 ·Q (𝐷
·Q 𝑈)) <Q (𝑇
·Q (𝐷 ·Q 𝑈)))) | 
| 69 | 58, 68 | mpbird 167 | 
. . 3
⊢ (𝜑 → 𝐸 <Q 𝑇) | 
| 70 |   | prop 7542 | 
. . . 4
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) | 
| 71 |   | prloc 7558 | 
. . . 4
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝐸 <Q
𝑇) → (𝐸 ∈ (1st
‘𝐵) ∨ 𝑇 ∈ (2nd
‘𝐵))) | 
| 72 | 70, 71 | sylan 283 | 
. . 3
⊢ ((𝐵 ∈ P ∧
𝐸
<Q 𝑇) → (𝐸 ∈ (1st ‘𝐵) ∨ 𝑇 ∈ (2nd ‘𝐵))) | 
| 73 | 27, 69, 72 | syl2anc 411 | 
. 2
⊢ (𝜑 → (𝐸 ∈ (1st ‘𝐵) ∨ 𝑇 ∈ (2nd ‘𝐵))) | 
| 74 | 33, 57, 73 | mpjaodan 799 | 
1
⊢ (𝜑 → (𝑄 ∈ (1st ‘(𝐴
·P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴
·P 𝐵)))) |