ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullocprlem GIF version

Theorem mullocprlem 7637
Description: Calculations for mullocpr 7638. (Contributed by Jim Kingdon, 10-Dec-2019.)
Hypotheses
Ref Expression
mullocprlem.ab (𝜑 → (𝐴P𝐵P))
mullocprlem.uqedu (𝜑 → (𝑈 ·Q 𝑄) <Q (𝐸 ·Q (𝐷 ·Q 𝑈)))
mullocprlem.edutdu (𝜑 → (𝐸 ·Q (𝐷 ·Q 𝑈)) <Q (𝑇 ·Q (𝐷 ·Q 𝑈)))
mullocprlem.tdudr (𝜑 → (𝑇 ·Q (𝐷 ·Q 𝑈)) <Q (𝐷 ·Q 𝑅))
mullocprlem.qr (𝜑 → (𝑄Q𝑅Q))
mullocprlem.duq (𝜑 → (𝐷Q𝑈Q))
mullocprlem.du (𝜑 → (𝐷 ∈ (1st𝐴) ∧ 𝑈 ∈ (2nd𝐴)))
mullocprlem.et (𝜑 → (𝐸Q𝑇Q))
Assertion
Ref Expression
mullocprlem (𝜑 → (𝑄 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 ·P 𝐵))))

Proof of Theorem mullocprlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mullocprlem.uqedu . . . . . . 7 (𝜑 → (𝑈 ·Q 𝑄) <Q (𝐸 ·Q (𝐷 ·Q 𝑈)))
2 mullocprlem.et . . . . . . . . 9 (𝜑 → (𝐸Q𝑇Q))
32simpld 112 . . . . . . . 8 (𝜑𝐸Q)
4 mullocprlem.duq . . . . . . . . 9 (𝜑 → (𝐷Q𝑈Q))
54simpld 112 . . . . . . . 8 (𝜑𝐷Q)
64simprd 114 . . . . . . . 8 (𝜑𝑈Q)
7 mulcomnqg 7450 . . . . . . . . 9 ((𝑥Q𝑦Q) → (𝑥 ·Q 𝑦) = (𝑦 ·Q 𝑥))
87adantl 277 . . . . . . . 8 ((𝜑 ∧ (𝑥Q𝑦Q)) → (𝑥 ·Q 𝑦) = (𝑦 ·Q 𝑥))
9 mulassnqg 7451 . . . . . . . . 9 ((𝑥Q𝑦Q𝑧Q) → ((𝑥 ·Q 𝑦) ·Q 𝑧) = (𝑥 ·Q (𝑦 ·Q 𝑧)))
109adantl 277 . . . . . . . 8 ((𝜑 ∧ (𝑥Q𝑦Q𝑧Q)) → ((𝑥 ·Q 𝑦) ·Q 𝑧) = (𝑥 ·Q (𝑦 ·Q 𝑧)))
113, 5, 6, 8, 10caov13d 6107 . . . . . . 7 (𝜑 → (𝐸 ·Q (𝐷 ·Q 𝑈)) = (𝑈 ·Q (𝐷 ·Q 𝐸)))
121, 11breqtrd 4059 . . . . . 6 (𝜑 → (𝑈 ·Q 𝑄) <Q (𝑈 ·Q (𝐷 ·Q 𝐸)))
13 mullocprlem.qr . . . . . . . 8 (𝜑 → (𝑄Q𝑅Q))
1413simpld 112 . . . . . . 7 (𝜑𝑄Q)
15 mulclnq 7443 . . . . . . . 8 ((𝐷Q𝐸Q) → (𝐷 ·Q 𝐸) ∈ Q)
165, 3, 15syl2anc 411 . . . . . . 7 (𝜑 → (𝐷 ·Q 𝐸) ∈ Q)
17 ltmnqg 7468 . . . . . . 7 ((𝑄Q ∧ (𝐷 ·Q 𝐸) ∈ Q𝑈Q) → (𝑄 <Q (𝐷 ·Q 𝐸) ↔ (𝑈 ·Q 𝑄) <Q (𝑈 ·Q (𝐷 ·Q 𝐸))))
1814, 16, 6, 17syl3anc 1249 . . . . . 6 (𝜑 → (𝑄 <Q (𝐷 ·Q 𝐸) ↔ (𝑈 ·Q 𝑄) <Q (𝑈 ·Q (𝐷 ·Q 𝐸))))
1912, 18mpbird 167 . . . . 5 (𝜑𝑄 <Q (𝐷 ·Q 𝐸))
2019adantr 276 . . . 4 ((𝜑𝐸 ∈ (1st𝐵)) → 𝑄 <Q (𝐷 ·Q 𝐸))
21 mullocprlem.ab . . . . . . . 8 (𝜑 → (𝐴P𝐵P))
2221simpld 112 . . . . . . 7 (𝜑𝐴P)
23 mullocprlem.du . . . . . . . 8 (𝜑 → (𝐷 ∈ (1st𝐴) ∧ 𝑈 ∈ (2nd𝐴)))
2423simpld 112 . . . . . . 7 (𝜑𝐷 ∈ (1st𝐴))
2522, 24jca 306 . . . . . 6 (𝜑 → (𝐴P𝐷 ∈ (1st𝐴)))
2625adantr 276 . . . . 5 ((𝜑𝐸 ∈ (1st𝐵)) → (𝐴P𝐷 ∈ (1st𝐴)))
2721simprd 114 . . . . . 6 (𝜑𝐵P)
2827anim1i 340 . . . . 5 ((𝜑𝐸 ∈ (1st𝐵)) → (𝐵P𝐸 ∈ (1st𝐵)))
2914adantr 276 . . . . 5 ((𝜑𝐸 ∈ (1st𝐵)) → 𝑄Q)
30 mulnqprl 7635 . . . . 5 ((((𝐴P𝐷 ∈ (1st𝐴)) ∧ (𝐵P𝐸 ∈ (1st𝐵))) ∧ 𝑄Q) → (𝑄 <Q (𝐷 ·Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 ·P 𝐵))))
3126, 28, 29, 30syl21anc 1248 . . . 4 ((𝜑𝐸 ∈ (1st𝐵)) → (𝑄 <Q (𝐷 ·Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 ·P 𝐵))))
3220, 31mpd 13 . . 3 ((𝜑𝐸 ∈ (1st𝐵)) → 𝑄 ∈ (1st ‘(𝐴 ·P 𝐵)))
3332orcd 734 . 2 ((𝜑𝐸 ∈ (1st𝐵)) → (𝑄 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 ·P 𝐵))))
342simprd 114 . . . . . . 7 (𝜑𝑇Q)
35 mulcomnqg 7450 . . . . . . 7 ((𝑇Q𝑈Q) → (𝑇 ·Q 𝑈) = (𝑈 ·Q 𝑇))
3634, 6, 35syl2anc 411 . . . . . 6 (𝜑 → (𝑇 ·Q 𝑈) = (𝑈 ·Q 𝑇))
37 mullocprlem.tdudr . . . . . . 7 (𝜑 → (𝑇 ·Q (𝐷 ·Q 𝑈)) <Q (𝐷 ·Q 𝑅))
38 mulclnq 7443 . . . . . . . . . 10 ((𝑇Q𝑈Q) → (𝑇 ·Q 𝑈) ∈ Q)
3934, 6, 38syl2anc 411 . . . . . . . . 9 (𝜑 → (𝑇 ·Q 𝑈) ∈ Q)
4013simprd 114 . . . . . . . . 9 (𝜑𝑅Q)
41 ltmnqg 7468 . . . . . . . . 9 (((𝑇 ·Q 𝑈) ∈ Q𝑅Q𝐷Q) → ((𝑇 ·Q 𝑈) <Q 𝑅 ↔ (𝐷 ·Q (𝑇 ·Q 𝑈)) <Q (𝐷 ·Q 𝑅)))
4239, 40, 5, 41syl3anc 1249 . . . . . . . 8 (𝜑 → ((𝑇 ·Q 𝑈) <Q 𝑅 ↔ (𝐷 ·Q (𝑇 ·Q 𝑈)) <Q (𝐷 ·Q 𝑅)))
4334, 5, 6, 8, 10caov12d 6105 . . . . . . . . 9 (𝜑 → (𝑇 ·Q (𝐷 ·Q 𝑈)) = (𝐷 ·Q (𝑇 ·Q 𝑈)))
4443breq1d 4043 . . . . . . . 8 (𝜑 → ((𝑇 ·Q (𝐷 ·Q 𝑈)) <Q (𝐷 ·Q 𝑅) ↔ (𝐷 ·Q (𝑇 ·Q 𝑈)) <Q (𝐷 ·Q 𝑅)))
4542, 44bitr4d 191 . . . . . . 7 (𝜑 → ((𝑇 ·Q 𝑈) <Q 𝑅 ↔ (𝑇 ·Q (𝐷 ·Q 𝑈)) <Q (𝐷 ·Q 𝑅)))
4637, 45mpbird 167 . . . . . 6 (𝜑 → (𝑇 ·Q 𝑈) <Q 𝑅)
4736, 46eqbrtrrd 4057 . . . . 5 (𝜑 → (𝑈 ·Q 𝑇) <Q 𝑅)
4847adantr 276 . . . 4 ((𝜑𝑇 ∈ (2nd𝐵)) → (𝑈 ·Q 𝑇) <Q 𝑅)
4923simprd 114 . . . . . . 7 (𝜑𝑈 ∈ (2nd𝐴))
5022, 49jca 306 . . . . . 6 (𝜑 → (𝐴P𝑈 ∈ (2nd𝐴)))
5150adantr 276 . . . . 5 ((𝜑𝑇 ∈ (2nd𝐵)) → (𝐴P𝑈 ∈ (2nd𝐴)))
5227anim1i 340 . . . . 5 ((𝜑𝑇 ∈ (2nd𝐵)) → (𝐵P𝑇 ∈ (2nd𝐵)))
5340adantr 276 . . . . 5 ((𝜑𝑇 ∈ (2nd𝐵)) → 𝑅Q)
54 mulnqpru 7636 . . . . 5 ((((𝐴P𝑈 ∈ (2nd𝐴)) ∧ (𝐵P𝑇 ∈ (2nd𝐵))) ∧ 𝑅Q) → ((𝑈 ·Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 ·P 𝐵))))
5551, 52, 53, 54syl21anc 1248 . . . 4 ((𝜑𝑇 ∈ (2nd𝐵)) → ((𝑈 ·Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 ·P 𝐵))))
5648, 55mpd 13 . . 3 ((𝜑𝑇 ∈ (2nd𝐵)) → 𝑅 ∈ (2nd ‘(𝐴 ·P 𝐵)))
5756olcd 735 . 2 ((𝜑𝑇 ∈ (2nd𝐵)) → (𝑄 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 ·P 𝐵))))
58 mullocprlem.edutdu . . . 4 (𝜑 → (𝐸 ·Q (𝐷 ·Q 𝑈)) <Q (𝑇 ·Q (𝐷 ·Q 𝑈)))
59 mulclnq 7443 . . . . . . 7 ((𝐷Q𝑈Q) → (𝐷 ·Q 𝑈) ∈ Q)
604, 59syl 14 . . . . . 6 (𝜑 → (𝐷 ·Q 𝑈) ∈ Q)
61 ltmnqg 7468 . . . . . 6 ((𝐸Q𝑇Q ∧ (𝐷 ·Q 𝑈) ∈ Q) → (𝐸 <Q 𝑇 ↔ ((𝐷 ·Q 𝑈) ·Q 𝐸) <Q ((𝐷 ·Q 𝑈) ·Q 𝑇)))
623, 34, 60, 61syl3anc 1249 . . . . 5 (𝜑 → (𝐸 <Q 𝑇 ↔ ((𝐷 ·Q 𝑈) ·Q 𝐸) <Q ((𝐷 ·Q 𝑈) ·Q 𝑇)))
63 mulcomnqg 7450 . . . . . . 7 (((𝐷 ·Q 𝑈) ∈ Q𝐸Q) → ((𝐷 ·Q 𝑈) ·Q 𝐸) = (𝐸 ·Q (𝐷 ·Q 𝑈)))
6460, 3, 63syl2anc 411 . . . . . 6 (𝜑 → ((𝐷 ·Q 𝑈) ·Q 𝐸) = (𝐸 ·Q (𝐷 ·Q 𝑈)))
65 mulcomnqg 7450 . . . . . . 7 (((𝐷 ·Q 𝑈) ∈ Q𝑇Q) → ((𝐷 ·Q 𝑈) ·Q 𝑇) = (𝑇 ·Q (𝐷 ·Q 𝑈)))
6660, 34, 65syl2anc 411 . . . . . 6 (𝜑 → ((𝐷 ·Q 𝑈) ·Q 𝑇) = (𝑇 ·Q (𝐷 ·Q 𝑈)))
6764, 66breq12d 4046 . . . . 5 (𝜑 → (((𝐷 ·Q 𝑈) ·Q 𝐸) <Q ((𝐷 ·Q 𝑈) ·Q 𝑇) ↔ (𝐸 ·Q (𝐷 ·Q 𝑈)) <Q (𝑇 ·Q (𝐷 ·Q 𝑈))))
6862, 67bitrd 188 . . . 4 (𝜑 → (𝐸 <Q 𝑇 ↔ (𝐸 ·Q (𝐷 ·Q 𝑈)) <Q (𝑇 ·Q (𝐷 ·Q 𝑈))))
6958, 68mpbird 167 . . 3 (𝜑𝐸 <Q 𝑇)
70 prop 7542 . . . 4 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
71 prloc 7558 . . . 4 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐸 <Q 𝑇) → (𝐸 ∈ (1st𝐵) ∨ 𝑇 ∈ (2nd𝐵)))
7270, 71sylan 283 . . 3 ((𝐵P𝐸 <Q 𝑇) → (𝐸 ∈ (1st𝐵) ∨ 𝑇 ∈ (2nd𝐵)))
7327, 69, 72syl2anc 411 . 2 (𝜑 → (𝐸 ∈ (1st𝐵) ∨ 𝑇 ∈ (2nd𝐵)))
7433, 57, 73mpjaodan 799 1 (𝜑 → (𝑄 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 ·P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2167  cop 3625   class class class wbr 4033  cfv 5258  (class class class)co 5922  1st c1st 6196  2nd c2nd 6197  Qcnq 7347   ·Q cmq 7350   <Q cltq 7352  Pcnp 7358   ·P cmp 7361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-mi 7373  df-lti 7374  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-inp 7533  df-imp 7536
This theorem is referenced by:  mullocpr  7638
  Copyright terms: Public domain W3C validator