ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullocprlem GIF version

Theorem mullocprlem 7532
Description: Calculations for mullocpr 7533. (Contributed by Jim Kingdon, 10-Dec-2019.)
Hypotheses
Ref Expression
mullocprlem.ab (𝜑 → (𝐴P𝐵P))
mullocprlem.uqedu (𝜑 → (𝑈 ·Q 𝑄) <Q (𝐸 ·Q (𝐷 ·Q 𝑈)))
mullocprlem.edutdu (𝜑 → (𝐸 ·Q (𝐷 ·Q 𝑈)) <Q (𝑇 ·Q (𝐷 ·Q 𝑈)))
mullocprlem.tdudr (𝜑 → (𝑇 ·Q (𝐷 ·Q 𝑈)) <Q (𝐷 ·Q 𝑅))
mullocprlem.qr (𝜑 → (𝑄Q𝑅Q))
mullocprlem.duq (𝜑 → (𝐷Q𝑈Q))
mullocprlem.du (𝜑 → (𝐷 ∈ (1st𝐴) ∧ 𝑈 ∈ (2nd𝐴)))
mullocprlem.et (𝜑 → (𝐸Q𝑇Q))
Assertion
Ref Expression
mullocprlem (𝜑 → (𝑄 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 ·P 𝐵))))

Proof of Theorem mullocprlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mullocprlem.uqedu . . . . . . 7 (𝜑 → (𝑈 ·Q 𝑄) <Q (𝐸 ·Q (𝐷 ·Q 𝑈)))
2 mullocprlem.et . . . . . . . . 9 (𝜑 → (𝐸Q𝑇Q))
32simpld 111 . . . . . . . 8 (𝜑𝐸Q)
4 mullocprlem.duq . . . . . . . . 9 (𝜑 → (𝐷Q𝑈Q))
54simpld 111 . . . . . . . 8 (𝜑𝐷Q)
64simprd 113 . . . . . . . 8 (𝜑𝑈Q)
7 mulcomnqg 7345 . . . . . . . . 9 ((𝑥Q𝑦Q) → (𝑥 ·Q 𝑦) = (𝑦 ·Q 𝑥))
87adantl 275 . . . . . . . 8 ((𝜑 ∧ (𝑥Q𝑦Q)) → (𝑥 ·Q 𝑦) = (𝑦 ·Q 𝑥))
9 mulassnqg 7346 . . . . . . . . 9 ((𝑥Q𝑦Q𝑧Q) → ((𝑥 ·Q 𝑦) ·Q 𝑧) = (𝑥 ·Q (𝑦 ·Q 𝑧)))
109adantl 275 . . . . . . . 8 ((𝜑 ∧ (𝑥Q𝑦Q𝑧Q)) → ((𝑥 ·Q 𝑦) ·Q 𝑧) = (𝑥 ·Q (𝑦 ·Q 𝑧)))
113, 5, 6, 8, 10caov13d 6036 . . . . . . 7 (𝜑 → (𝐸 ·Q (𝐷 ·Q 𝑈)) = (𝑈 ·Q (𝐷 ·Q 𝐸)))
121, 11breqtrd 4015 . . . . . 6 (𝜑 → (𝑈 ·Q 𝑄) <Q (𝑈 ·Q (𝐷 ·Q 𝐸)))
13 mullocprlem.qr . . . . . . . 8 (𝜑 → (𝑄Q𝑅Q))
1413simpld 111 . . . . . . 7 (𝜑𝑄Q)
15 mulclnq 7338 . . . . . . . 8 ((𝐷Q𝐸Q) → (𝐷 ·Q 𝐸) ∈ Q)
165, 3, 15syl2anc 409 . . . . . . 7 (𝜑 → (𝐷 ·Q 𝐸) ∈ Q)
17 ltmnqg 7363 . . . . . . 7 ((𝑄Q ∧ (𝐷 ·Q 𝐸) ∈ Q𝑈Q) → (𝑄 <Q (𝐷 ·Q 𝐸) ↔ (𝑈 ·Q 𝑄) <Q (𝑈 ·Q (𝐷 ·Q 𝐸))))
1814, 16, 6, 17syl3anc 1233 . . . . . 6 (𝜑 → (𝑄 <Q (𝐷 ·Q 𝐸) ↔ (𝑈 ·Q 𝑄) <Q (𝑈 ·Q (𝐷 ·Q 𝐸))))
1912, 18mpbird 166 . . . . 5 (𝜑𝑄 <Q (𝐷 ·Q 𝐸))
2019adantr 274 . . . 4 ((𝜑𝐸 ∈ (1st𝐵)) → 𝑄 <Q (𝐷 ·Q 𝐸))
21 mullocprlem.ab . . . . . . . 8 (𝜑 → (𝐴P𝐵P))
2221simpld 111 . . . . . . 7 (𝜑𝐴P)
23 mullocprlem.du . . . . . . . 8 (𝜑 → (𝐷 ∈ (1st𝐴) ∧ 𝑈 ∈ (2nd𝐴)))
2423simpld 111 . . . . . . 7 (𝜑𝐷 ∈ (1st𝐴))
2522, 24jca 304 . . . . . 6 (𝜑 → (𝐴P𝐷 ∈ (1st𝐴)))
2625adantr 274 . . . . 5 ((𝜑𝐸 ∈ (1st𝐵)) → (𝐴P𝐷 ∈ (1st𝐴)))
2721simprd 113 . . . . . 6 (𝜑𝐵P)
2827anim1i 338 . . . . 5 ((𝜑𝐸 ∈ (1st𝐵)) → (𝐵P𝐸 ∈ (1st𝐵)))
2914adantr 274 . . . . 5 ((𝜑𝐸 ∈ (1st𝐵)) → 𝑄Q)
30 mulnqprl 7530 . . . . 5 ((((𝐴P𝐷 ∈ (1st𝐴)) ∧ (𝐵P𝐸 ∈ (1st𝐵))) ∧ 𝑄Q) → (𝑄 <Q (𝐷 ·Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 ·P 𝐵))))
3126, 28, 29, 30syl21anc 1232 . . . 4 ((𝜑𝐸 ∈ (1st𝐵)) → (𝑄 <Q (𝐷 ·Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 ·P 𝐵))))
3220, 31mpd 13 . . 3 ((𝜑𝐸 ∈ (1st𝐵)) → 𝑄 ∈ (1st ‘(𝐴 ·P 𝐵)))
3332orcd 728 . 2 ((𝜑𝐸 ∈ (1st𝐵)) → (𝑄 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 ·P 𝐵))))
342simprd 113 . . . . . . 7 (𝜑𝑇Q)
35 mulcomnqg 7345 . . . . . . 7 ((𝑇Q𝑈Q) → (𝑇 ·Q 𝑈) = (𝑈 ·Q 𝑇))
3634, 6, 35syl2anc 409 . . . . . 6 (𝜑 → (𝑇 ·Q 𝑈) = (𝑈 ·Q 𝑇))
37 mullocprlem.tdudr . . . . . . 7 (𝜑 → (𝑇 ·Q (𝐷 ·Q 𝑈)) <Q (𝐷 ·Q 𝑅))
38 mulclnq 7338 . . . . . . . . . 10 ((𝑇Q𝑈Q) → (𝑇 ·Q 𝑈) ∈ Q)
3934, 6, 38syl2anc 409 . . . . . . . . 9 (𝜑 → (𝑇 ·Q 𝑈) ∈ Q)
4013simprd 113 . . . . . . . . 9 (𝜑𝑅Q)
41 ltmnqg 7363 . . . . . . . . 9 (((𝑇 ·Q 𝑈) ∈ Q𝑅Q𝐷Q) → ((𝑇 ·Q 𝑈) <Q 𝑅 ↔ (𝐷 ·Q (𝑇 ·Q 𝑈)) <Q (𝐷 ·Q 𝑅)))
4239, 40, 5, 41syl3anc 1233 . . . . . . . 8 (𝜑 → ((𝑇 ·Q 𝑈) <Q 𝑅 ↔ (𝐷 ·Q (𝑇 ·Q 𝑈)) <Q (𝐷 ·Q 𝑅)))
4334, 5, 6, 8, 10caov12d 6034 . . . . . . . . 9 (𝜑 → (𝑇 ·Q (𝐷 ·Q 𝑈)) = (𝐷 ·Q (𝑇 ·Q 𝑈)))
4443breq1d 3999 . . . . . . . 8 (𝜑 → ((𝑇 ·Q (𝐷 ·Q 𝑈)) <Q (𝐷 ·Q 𝑅) ↔ (𝐷 ·Q (𝑇 ·Q 𝑈)) <Q (𝐷 ·Q 𝑅)))
4542, 44bitr4d 190 . . . . . . 7 (𝜑 → ((𝑇 ·Q 𝑈) <Q 𝑅 ↔ (𝑇 ·Q (𝐷 ·Q 𝑈)) <Q (𝐷 ·Q 𝑅)))
4637, 45mpbird 166 . . . . . 6 (𝜑 → (𝑇 ·Q 𝑈) <Q 𝑅)
4736, 46eqbrtrrd 4013 . . . . 5 (𝜑 → (𝑈 ·Q 𝑇) <Q 𝑅)
4847adantr 274 . . . 4 ((𝜑𝑇 ∈ (2nd𝐵)) → (𝑈 ·Q 𝑇) <Q 𝑅)
4923simprd 113 . . . . . . 7 (𝜑𝑈 ∈ (2nd𝐴))
5022, 49jca 304 . . . . . 6 (𝜑 → (𝐴P𝑈 ∈ (2nd𝐴)))
5150adantr 274 . . . . 5 ((𝜑𝑇 ∈ (2nd𝐵)) → (𝐴P𝑈 ∈ (2nd𝐴)))
5227anim1i 338 . . . . 5 ((𝜑𝑇 ∈ (2nd𝐵)) → (𝐵P𝑇 ∈ (2nd𝐵)))
5340adantr 274 . . . . 5 ((𝜑𝑇 ∈ (2nd𝐵)) → 𝑅Q)
54 mulnqpru 7531 . . . . 5 ((((𝐴P𝑈 ∈ (2nd𝐴)) ∧ (𝐵P𝑇 ∈ (2nd𝐵))) ∧ 𝑅Q) → ((𝑈 ·Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 ·P 𝐵))))
5551, 52, 53, 54syl21anc 1232 . . . 4 ((𝜑𝑇 ∈ (2nd𝐵)) → ((𝑈 ·Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 ·P 𝐵))))
5648, 55mpd 13 . . 3 ((𝜑𝑇 ∈ (2nd𝐵)) → 𝑅 ∈ (2nd ‘(𝐴 ·P 𝐵)))
5756olcd 729 . 2 ((𝜑𝑇 ∈ (2nd𝐵)) → (𝑄 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 ·P 𝐵))))
58 mullocprlem.edutdu . . . 4 (𝜑 → (𝐸 ·Q (𝐷 ·Q 𝑈)) <Q (𝑇 ·Q (𝐷 ·Q 𝑈)))
59 mulclnq 7338 . . . . . . 7 ((𝐷Q𝑈Q) → (𝐷 ·Q 𝑈) ∈ Q)
604, 59syl 14 . . . . . 6 (𝜑 → (𝐷 ·Q 𝑈) ∈ Q)
61 ltmnqg 7363 . . . . . 6 ((𝐸Q𝑇Q ∧ (𝐷 ·Q 𝑈) ∈ Q) → (𝐸 <Q 𝑇 ↔ ((𝐷 ·Q 𝑈) ·Q 𝐸) <Q ((𝐷 ·Q 𝑈) ·Q 𝑇)))
623, 34, 60, 61syl3anc 1233 . . . . 5 (𝜑 → (𝐸 <Q 𝑇 ↔ ((𝐷 ·Q 𝑈) ·Q 𝐸) <Q ((𝐷 ·Q 𝑈) ·Q 𝑇)))
63 mulcomnqg 7345 . . . . . . 7 (((𝐷 ·Q 𝑈) ∈ Q𝐸Q) → ((𝐷 ·Q 𝑈) ·Q 𝐸) = (𝐸 ·Q (𝐷 ·Q 𝑈)))
6460, 3, 63syl2anc 409 . . . . . 6 (𝜑 → ((𝐷 ·Q 𝑈) ·Q 𝐸) = (𝐸 ·Q (𝐷 ·Q 𝑈)))
65 mulcomnqg 7345 . . . . . . 7 (((𝐷 ·Q 𝑈) ∈ Q𝑇Q) → ((𝐷 ·Q 𝑈) ·Q 𝑇) = (𝑇 ·Q (𝐷 ·Q 𝑈)))
6660, 34, 65syl2anc 409 . . . . . 6 (𝜑 → ((𝐷 ·Q 𝑈) ·Q 𝑇) = (𝑇 ·Q (𝐷 ·Q 𝑈)))
6764, 66breq12d 4002 . . . . 5 (𝜑 → (((𝐷 ·Q 𝑈) ·Q 𝐸) <Q ((𝐷 ·Q 𝑈) ·Q 𝑇) ↔ (𝐸 ·Q (𝐷 ·Q 𝑈)) <Q (𝑇 ·Q (𝐷 ·Q 𝑈))))
6862, 67bitrd 187 . . . 4 (𝜑 → (𝐸 <Q 𝑇 ↔ (𝐸 ·Q (𝐷 ·Q 𝑈)) <Q (𝑇 ·Q (𝐷 ·Q 𝑈))))
6958, 68mpbird 166 . . 3 (𝜑𝐸 <Q 𝑇)
70 prop 7437 . . . 4 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
71 prloc 7453 . . . 4 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐸 <Q 𝑇) → (𝐸 ∈ (1st𝐵) ∨ 𝑇 ∈ (2nd𝐵)))
7270, 71sylan 281 . . 3 ((𝐵P𝐸 <Q 𝑇) → (𝐸 ∈ (1st𝐵) ∨ 𝑇 ∈ (2nd𝐵)))
7327, 69, 72syl2anc 409 . 2 (𝜑 → (𝐸 ∈ (1st𝐵) ∨ 𝑇 ∈ (2nd𝐵)))
7433, 57, 73mpjaodan 793 1 (𝜑 → (𝑄 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 ·P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  wcel 2141  cop 3586   class class class wbr 3989  cfv 5198  (class class class)co 5853  1st c1st 6117  2nd c2nd 6118  Qcnq 7242   ·Q cmq 7245   <Q cltq 7247  Pcnp 7253   ·P cmp 7256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-mi 7268  df-lti 7269  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-inp 7428  df-imp 7431
This theorem is referenced by:  mullocpr  7533
  Copyright terms: Public domain W3C validator