Step | Hyp | Ref
| Expression |
1 | | mullocprlem.uqedu |
. . . . . . 7
⊢ (𝜑 → (𝑈 ·Q 𝑄) <Q
(𝐸
·Q (𝐷 ·Q 𝑈))) |
2 | | mullocprlem.et |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 ∈ Q ∧ 𝑇 ∈
Q)) |
3 | 2 | simpld 111 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ Q) |
4 | | mullocprlem.duq |
. . . . . . . . 9
⊢ (𝜑 → (𝐷 ∈ Q ∧ 𝑈 ∈
Q)) |
5 | 4 | simpld 111 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ Q) |
6 | 4 | simprd 113 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ Q) |
7 | | mulcomnqg 7297 |
. . . . . . . . 9
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ (𝑥
·Q 𝑦) = (𝑦 ·Q 𝑥)) |
8 | 7 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
(𝑥
·Q 𝑦) = (𝑦 ·Q 𝑥)) |
9 | | mulassnqg 7298 |
. . . . . . . . 9
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q
∧ 𝑧 ∈
Q) → ((𝑥
·Q 𝑦) ·Q 𝑧) = (𝑥 ·Q (𝑦
·Q 𝑧))) |
10 | 9 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧
𝑧 ∈ Q))
→ ((𝑥
·Q 𝑦) ·Q 𝑧) = (𝑥 ·Q (𝑦
·Q 𝑧))) |
11 | 3, 5, 6, 8, 10 | caov13d 6001 |
. . . . . . 7
⊢ (𝜑 → (𝐸 ·Q (𝐷
·Q 𝑈)) = (𝑈 ·Q (𝐷
·Q 𝐸))) |
12 | 1, 11 | breqtrd 3990 |
. . . . . 6
⊢ (𝜑 → (𝑈 ·Q 𝑄) <Q
(𝑈
·Q (𝐷 ·Q 𝐸))) |
13 | | mullocprlem.qr |
. . . . . . . 8
⊢ (𝜑 → (𝑄 ∈ Q ∧ 𝑅 ∈
Q)) |
14 | 13 | simpld 111 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ Q) |
15 | | mulclnq 7290 |
. . . . . . . 8
⊢ ((𝐷 ∈ Q ∧
𝐸 ∈ Q)
→ (𝐷
·Q 𝐸) ∈ Q) |
16 | 5, 3, 15 | syl2anc 409 |
. . . . . . 7
⊢ (𝜑 → (𝐷 ·Q 𝐸) ∈
Q) |
17 | | ltmnqg 7315 |
. . . . . . 7
⊢ ((𝑄 ∈ Q ∧
(𝐷
·Q 𝐸) ∈ Q ∧ 𝑈 ∈ Q) →
(𝑄
<Q (𝐷 ·Q 𝐸) ↔ (𝑈 ·Q 𝑄) <Q
(𝑈
·Q (𝐷 ·Q 𝐸)))) |
18 | 14, 16, 6, 17 | syl3anc 1220 |
. . . . . 6
⊢ (𝜑 → (𝑄 <Q (𝐷
·Q 𝐸) ↔ (𝑈 ·Q 𝑄) <Q
(𝑈
·Q (𝐷 ·Q 𝐸)))) |
19 | 12, 18 | mpbird 166 |
. . . . 5
⊢ (𝜑 → 𝑄 <Q (𝐷
·Q 𝐸)) |
20 | 19 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 ∈ (1st ‘𝐵)) → 𝑄 <Q (𝐷
·Q 𝐸)) |
21 | | mullocprlem.ab |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∈ P ∧ 𝐵 ∈
P)) |
22 | 21 | simpld 111 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ P) |
23 | | mullocprlem.du |
. . . . . . . 8
⊢ (𝜑 → (𝐷 ∈ (1st ‘𝐴) ∧ 𝑈 ∈ (2nd ‘𝐴))) |
24 | 23 | simpld 111 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
25 | 22, 24 | jca 304 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∈ P ∧ 𝐷 ∈ (1st
‘𝐴))) |
26 | 25 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸 ∈ (1st ‘𝐵)) → (𝐴 ∈ P ∧ 𝐷 ∈ (1st
‘𝐴))) |
27 | 21 | simprd 113 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ P) |
28 | 27 | anim1i 338 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸 ∈ (1st ‘𝐵)) → (𝐵 ∈ P ∧ 𝐸 ∈ (1st
‘𝐵))) |
29 | 14 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸 ∈ (1st ‘𝐵)) → 𝑄 ∈ Q) |
30 | | mulnqprl 7482 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐷 ∈ (1st
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐸 ∈ (1st
‘𝐵))) ∧ 𝑄 ∈ Q) →
(𝑄
<Q (𝐷 ·Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴
·P 𝐵)))) |
31 | 26, 28, 29, 30 | syl21anc 1219 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 ∈ (1st ‘𝐵)) → (𝑄 <Q (𝐷
·Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴
·P 𝐵)))) |
32 | 20, 31 | mpd 13 |
. . 3
⊢ ((𝜑 ∧ 𝐸 ∈ (1st ‘𝐵)) → 𝑄 ∈ (1st ‘(𝐴
·P 𝐵))) |
33 | 32 | orcd 723 |
. 2
⊢ ((𝜑 ∧ 𝐸 ∈ (1st ‘𝐵)) → (𝑄 ∈ (1st ‘(𝐴
·P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴
·P 𝐵)))) |
34 | 2 | simprd 113 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ Q) |
35 | | mulcomnqg 7297 |
. . . . . . 7
⊢ ((𝑇 ∈ Q ∧
𝑈 ∈ Q)
→ (𝑇
·Q 𝑈) = (𝑈 ·Q 𝑇)) |
36 | 34, 6, 35 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → (𝑇 ·Q 𝑈) = (𝑈 ·Q 𝑇)) |
37 | | mullocprlem.tdudr |
. . . . . . 7
⊢ (𝜑 → (𝑇 ·Q (𝐷
·Q 𝑈)) <Q (𝐷
·Q 𝑅)) |
38 | | mulclnq 7290 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ Q ∧
𝑈 ∈ Q)
→ (𝑇
·Q 𝑈) ∈ Q) |
39 | 34, 6, 38 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝜑 → (𝑇 ·Q 𝑈) ∈
Q) |
40 | 13 | simprd 113 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Q) |
41 | | ltmnqg 7315 |
. . . . . . . . 9
⊢ (((𝑇
·Q 𝑈) ∈ Q ∧ 𝑅 ∈ Q ∧
𝐷 ∈ Q)
→ ((𝑇
·Q 𝑈) <Q 𝑅 ↔ (𝐷 ·Q (𝑇
·Q 𝑈)) <Q (𝐷
·Q 𝑅))) |
42 | 39, 40, 5, 41 | syl3anc 1220 |
. . . . . . . 8
⊢ (𝜑 → ((𝑇 ·Q 𝑈) <Q
𝑅 ↔ (𝐷 ·Q (𝑇
·Q 𝑈)) <Q (𝐷
·Q 𝑅))) |
43 | 34, 5, 6, 8, 10 | caov12d 5999 |
. . . . . . . . 9
⊢ (𝜑 → (𝑇 ·Q (𝐷
·Q 𝑈)) = (𝐷 ·Q (𝑇
·Q 𝑈))) |
44 | 43 | breq1d 3975 |
. . . . . . . 8
⊢ (𝜑 → ((𝑇 ·Q (𝐷
·Q 𝑈)) <Q (𝐷
·Q 𝑅) ↔ (𝐷 ·Q (𝑇
·Q 𝑈)) <Q (𝐷
·Q 𝑅))) |
45 | 42, 44 | bitr4d 190 |
. . . . . . 7
⊢ (𝜑 → ((𝑇 ·Q 𝑈) <Q
𝑅 ↔ (𝑇 ·Q (𝐷
·Q 𝑈)) <Q (𝐷
·Q 𝑅))) |
46 | 37, 45 | mpbird 166 |
. . . . . 6
⊢ (𝜑 → (𝑇 ·Q 𝑈) <Q
𝑅) |
47 | 36, 46 | eqbrtrrd 3988 |
. . . . 5
⊢ (𝜑 → (𝑈 ·Q 𝑇) <Q
𝑅) |
48 | 47 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑇 ∈ (2nd ‘𝐵)) → (𝑈 ·Q 𝑇) <Q
𝑅) |
49 | 23 | simprd 113 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
50 | 22, 49 | jca 304 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∈ P ∧ 𝑈 ∈ (2nd
‘𝐴))) |
51 | 50 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑇 ∈ (2nd ‘𝐵)) → (𝐴 ∈ P ∧ 𝑈 ∈ (2nd
‘𝐴))) |
52 | 27 | anim1i 338 |
. . . . 5
⊢ ((𝜑 ∧ 𝑇 ∈ (2nd ‘𝐵)) → (𝐵 ∈ P ∧ 𝑇 ∈ (2nd
‘𝐵))) |
53 | 40 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑇 ∈ (2nd ‘𝐵)) → 𝑅 ∈ Q) |
54 | | mulnqpru 7483 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝑈 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝑇 ∈ (2nd
‘𝐵))) ∧ 𝑅 ∈ Q) →
((𝑈
·Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴
·P 𝐵)))) |
55 | 51, 52, 53, 54 | syl21anc 1219 |
. . . 4
⊢ ((𝜑 ∧ 𝑇 ∈ (2nd ‘𝐵)) → ((𝑈 ·Q 𝑇) <Q
𝑅 → 𝑅 ∈ (2nd ‘(𝐴
·P 𝐵)))) |
56 | 48, 55 | mpd 13 |
. . 3
⊢ ((𝜑 ∧ 𝑇 ∈ (2nd ‘𝐵)) → 𝑅 ∈ (2nd ‘(𝐴
·P 𝐵))) |
57 | 56 | olcd 724 |
. 2
⊢ ((𝜑 ∧ 𝑇 ∈ (2nd ‘𝐵)) → (𝑄 ∈ (1st ‘(𝐴
·P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴
·P 𝐵)))) |
58 | | mullocprlem.edutdu |
. . . 4
⊢ (𝜑 → (𝐸 ·Q (𝐷
·Q 𝑈)) <Q (𝑇
·Q (𝐷 ·Q 𝑈))) |
59 | | mulclnq 7290 |
. . . . . . 7
⊢ ((𝐷 ∈ Q ∧
𝑈 ∈ Q)
→ (𝐷
·Q 𝑈) ∈ Q) |
60 | 4, 59 | syl 14 |
. . . . . 6
⊢ (𝜑 → (𝐷 ·Q 𝑈) ∈
Q) |
61 | | ltmnqg 7315 |
. . . . . 6
⊢ ((𝐸 ∈ Q ∧
𝑇 ∈ Q
∧ (𝐷
·Q 𝑈) ∈ Q) → (𝐸 <Q
𝑇 ↔ ((𝐷
·Q 𝑈) ·Q 𝐸) <Q
((𝐷
·Q 𝑈) ·Q 𝑇))) |
62 | 3, 34, 60, 61 | syl3anc 1220 |
. . . . 5
⊢ (𝜑 → (𝐸 <Q 𝑇 ↔ ((𝐷 ·Q 𝑈)
·Q 𝐸) <Q ((𝐷
·Q 𝑈) ·Q 𝑇))) |
63 | | mulcomnqg 7297 |
. . . . . . 7
⊢ (((𝐷
·Q 𝑈) ∈ Q ∧ 𝐸 ∈ Q) →
((𝐷
·Q 𝑈) ·Q 𝐸) = (𝐸 ·Q (𝐷
·Q 𝑈))) |
64 | 60, 3, 63 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → ((𝐷 ·Q 𝑈)
·Q 𝐸) = (𝐸 ·Q (𝐷
·Q 𝑈))) |
65 | | mulcomnqg 7297 |
. . . . . . 7
⊢ (((𝐷
·Q 𝑈) ∈ Q ∧ 𝑇 ∈ Q) →
((𝐷
·Q 𝑈) ·Q 𝑇) = (𝑇 ·Q (𝐷
·Q 𝑈))) |
66 | 60, 34, 65 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → ((𝐷 ·Q 𝑈)
·Q 𝑇) = (𝑇 ·Q (𝐷
·Q 𝑈))) |
67 | 64, 66 | breq12d 3978 |
. . . . 5
⊢ (𝜑 → (((𝐷 ·Q 𝑈)
·Q 𝐸) <Q ((𝐷
·Q 𝑈) ·Q 𝑇) ↔ (𝐸 ·Q (𝐷
·Q 𝑈)) <Q (𝑇
·Q (𝐷 ·Q 𝑈)))) |
68 | 62, 67 | bitrd 187 |
. . . 4
⊢ (𝜑 → (𝐸 <Q 𝑇 ↔ (𝐸 ·Q (𝐷
·Q 𝑈)) <Q (𝑇
·Q (𝐷 ·Q 𝑈)))) |
69 | 58, 68 | mpbird 166 |
. . 3
⊢ (𝜑 → 𝐸 <Q 𝑇) |
70 | | prop 7389 |
. . . 4
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) |
71 | | prloc 7405 |
. . . 4
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝐸 <Q
𝑇) → (𝐸 ∈ (1st
‘𝐵) ∨ 𝑇 ∈ (2nd
‘𝐵))) |
72 | 70, 71 | sylan 281 |
. . 3
⊢ ((𝐵 ∈ P ∧
𝐸
<Q 𝑇) → (𝐸 ∈ (1st ‘𝐵) ∨ 𝑇 ∈ (2nd ‘𝐵))) |
73 | 27, 69, 72 | syl2anc 409 |
. 2
⊢ (𝜑 → (𝐸 ∈ (1st ‘𝐵) ∨ 𝑇 ∈ (2nd ‘𝐵))) |
74 | 33, 57, 73 | mpjaodan 788 |
1
⊢ (𝜑 → (𝑄 ∈ (1st ‘(𝐴
·P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴
·P 𝐵)))) |