ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttrsr GIF version

Theorem lttrsr 7255
Description: Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
lttrsr ((𝑓R𝑔RR) → ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R ))
Distinct variable group:   𝑓,𝑔,

Proof of Theorem lttrsr
Dummy variables 𝑟 𝑠 𝑡 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7220 . 2 R = ((P × P) / ~R )
2 breq1 3825 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝑓 <R [⟨𝑧, 𝑤⟩] ~R ))
32anbi1d 453 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ (𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R )))
4 breq1 3825 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R𝑓 <R [⟨𝑣, 𝑢⟩] ~R ))
53, 4imbi12d 232 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ((([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R )))
6 breq2 3826 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → (𝑓 <R [⟨𝑧, 𝑤⟩] ~R𝑓 <R 𝑔))
7 breq1 3825 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R𝑔 <R [⟨𝑣, 𝑢⟩] ~R ))
86, 7anbi12d 457 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ (𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R )))
98imbi1d 229 . 2 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → (((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R )))
10 breq2 3826 . . . 4 ([⟨𝑣, 𝑢⟩] ~R = → (𝑔 <R [⟨𝑣, 𝑢⟩] ~R𝑔 <R ))
1110anbi2d 452 . . 3 ([⟨𝑣, 𝑢⟩] ~R = → ((𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R ) ↔ (𝑓 <R 𝑔𝑔 <R )))
12 breq2 3826 . . 3 ([⟨𝑣, 𝑢⟩] ~R = → (𝑓 <R [⟨𝑣, 𝑢⟩] ~R𝑓 <R ))
1311, 12imbi12d 232 . 2 ([⟨𝑣, 𝑢⟩] ~R = → (((𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R )))
14 ltsrprg 7240 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
15143adant3 961 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
16 ltaprg 7125 . . . . . . . 8 ((𝑟P𝑠P𝑡P) → (𝑟<P 𝑠 ↔ (𝑡 +P 𝑟)<P (𝑡 +P 𝑠)))
1716adantl 271 . . . . . . 7 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑟P𝑠P𝑡P)) → (𝑟<P 𝑠 ↔ (𝑡 +P 𝑟)<P (𝑡 +P 𝑠)))
18 simp1l 965 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑥P)
19 simp2r 968 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑤P)
20 addclpr 7043 . . . . . . . 8 ((𝑥P𝑤P) → (𝑥 +P 𝑤) ∈ P)
2118, 19, 20syl2anc 403 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 +P 𝑤) ∈ P)
22 simp1r 966 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑦P)
23 simp2l 967 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑧P)
24 addclpr 7043 . . . . . . . 8 ((𝑦P𝑧P) → (𝑦 +P 𝑧) ∈ P)
2522, 23, 24syl2anc 403 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 +P 𝑧) ∈ P)
26 simp3r 970 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑢P)
27 addcomprg 7084 . . . . . . . 8 ((𝑟P𝑠P) → (𝑟 +P 𝑠) = (𝑠 +P 𝑟))
2827adantl 271 . . . . . . 7 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑟P𝑠P)) → (𝑟 +P 𝑠) = (𝑠 +P 𝑟))
2917, 21, 25, 26, 28caovord2d 5773 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ((𝑥 +P 𝑤) +P 𝑢)<P ((𝑦 +P 𝑧) +P 𝑢)))
30 addassprg 7085 . . . . . . . 8 ((𝑥P𝑤P𝑢P) → ((𝑥 +P 𝑤) +P 𝑢) = (𝑥 +P (𝑤 +P 𝑢)))
3118, 19, 26, 30syl3anc 1172 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 +P 𝑤) +P 𝑢) = (𝑥 +P (𝑤 +P 𝑢)))
32 addassprg 7085 . . . . . . . 8 ((𝑦P𝑧P𝑢P) → ((𝑦 +P 𝑧) +P 𝑢) = (𝑦 +P (𝑧 +P 𝑢)))
3322, 23, 26, 32syl3anc 1172 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑦 +P 𝑧) +P 𝑢) = (𝑦 +P (𝑧 +P 𝑢)))
3431, 33breq12d 3835 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (((𝑥 +P 𝑤) +P 𝑢)<P ((𝑦 +P 𝑧) +P 𝑢) ↔ (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢))))
3529, 34bitrd 186 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢))))
3615, 35bitrd 186 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢))))
37 ltsrprg 7240 . . . . . 6 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))
38373adant1 959 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))
39 addclpr 7043 . . . . . . 7 ((𝑧P𝑢P) → (𝑧 +P 𝑢) ∈ P)
4023, 26, 39syl2anc 403 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑧 +P 𝑢) ∈ P)
41 simp3l 969 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑣P)
42 addclpr 7043 . . . . . . 7 ((𝑤P𝑣P) → (𝑤 +P 𝑣) ∈ P)
4319, 41, 42syl2anc 403 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑤 +P 𝑣) ∈ P)
44 ltaprg 7125 . . . . . 6 (((𝑧 +P 𝑢) ∈ P ∧ (𝑤 +P 𝑣) ∈ P𝑦P) → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))))
4540, 43, 22, 44syl3anc 1172 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))))
4638, 45bitrd 186 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))))
4736, 46anbi12d 457 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)) ∧ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)))))
48 ltsopr 7102 . . . . 5 <P Or P
49 ltrelpr 7011 . . . . 5 <P ⊆ (P × P)
5048, 49sotri 4796 . . . 4 (((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)) ∧ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))) → (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)))
51 addclpr 7043 . . . . . . . 8 ((𝑥P𝑢P) → (𝑥 +P 𝑢) ∈ P)
5218, 26, 51syl2anc 403 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 +P 𝑢) ∈ P)
53 addclpr 7043 . . . . . . . 8 ((𝑦P𝑣P) → (𝑦 +P 𝑣) ∈ P)
5422, 41, 53syl2anc 403 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 +P 𝑣) ∈ P)
55 ltaprg 7125 . . . . . . 7 (((𝑥 +P 𝑢) ∈ P ∧ (𝑦 +P 𝑣) ∈ P𝑤P) → ((𝑥 +P 𝑢)<P (𝑦 +P 𝑣) ↔ (𝑤 +P (𝑥 +P 𝑢))<P (𝑤 +P (𝑦 +P 𝑣))))
5652, 54, 19, 55syl3anc 1172 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 +P 𝑢)<P (𝑦 +P 𝑣) ↔ (𝑤 +P (𝑥 +P 𝑢))<P (𝑤 +P (𝑦 +P 𝑣))))
5756biimprd 156 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑤 +P (𝑥 +P 𝑢))<P (𝑤 +P (𝑦 +P 𝑣)) → (𝑥 +P 𝑢)<P (𝑦 +P 𝑣)))
58 addassprg 7085 . . . . . . . 8 ((𝑟P𝑠P𝑡P) → ((𝑟 +P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P 𝑡)))
5958adantl 271 . . . . . . 7 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑟P𝑠P𝑡P)) → ((𝑟 +P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P 𝑡)))
6018, 19, 26, 28, 59caov12d 5785 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 +P (𝑤 +P 𝑢)) = (𝑤 +P (𝑥 +P 𝑢)))
6122, 19, 41, 28, 59caov12d 5785 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 +P (𝑤 +P 𝑣)) = (𝑤 +P (𝑦 +P 𝑣)))
6260, 61breq12d 3835 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)) ↔ (𝑤 +P (𝑥 +P 𝑢))<P (𝑤 +P (𝑦 +P 𝑣))))
63 ltsrprg 7240 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑥 +P 𝑢)<P (𝑦 +P 𝑣)))
64633adant2 960 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑥 +P 𝑢)<P (𝑦 +P 𝑣)))
6557, 62, 643imtr4d 201 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ))
6650, 65syl5 32 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)) ∧ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ))
6747, 66sylbid 148 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ))
681, 5, 9, 13, 673ecoptocl 6335 1 ((𝑓R𝑔RR) → ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 922   = wceq 1287  wcel 1436  cop 3434   class class class wbr 3822  (class class class)co 5615  [cec 6244  Pcnp 6797   +P cpp 6799  <P cltp 6801   ~R cer 6802  Rcnr 6803   <R cltr 6809
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3931  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-iun 3717  df-br 3823  df-opab 3877  df-mpt 3878  df-tr 3914  df-eprel 4092  df-id 4096  df-po 4099  df-iso 4100  df-iord 4169  df-on 4171  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-1st 5870  df-2nd 5871  df-recs 6026  df-irdg 6091  df-1o 6137  df-2o 6138  df-oadd 6141  df-omul 6142  df-er 6246  df-ec 6248  df-qs 6252  df-ni 6810  df-pli 6811  df-mi 6812  df-lti 6813  df-plpq 6850  df-mpq 6851  df-enq 6853  df-nqqs 6854  df-plqqs 6855  df-mqqs 6856  df-1nqqs 6857  df-rq 6858  df-ltnqqs 6859  df-enq0 6930  df-nq0 6931  df-0nq0 6932  df-plq0 6933  df-mq0 6934  df-inp 6972  df-iplp 6974  df-iltp 6976  df-enr 7219  df-nr 7220  df-ltr 7223
This theorem is referenced by:  ltposr  7256
  Copyright terms: Public domain W3C validator