Step | Hyp | Ref
| Expression |
1 | | df-nr 7668 |
. 2
⊢
R = ((P × P) /
~R ) |
2 | | breq1 3985 |
. . . 4
⊢
([〈𝑥, 𝑦〉]
~R = 𝑓 → ([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ↔
𝑓
<R [〈𝑧, 𝑤〉] ~R
)) |
3 | 2 | anbi1d 461 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~R = 𝑓 → (([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ∧
[〈𝑧, 𝑤〉]
~R <R [〈𝑣, 𝑢〉] ~R ) ↔
(𝑓
<R [〈𝑧, 𝑤〉] ~R ∧
[〈𝑧, 𝑤〉]
~R <R [〈𝑣, 𝑢〉] ~R
))) |
4 | | breq1 3985 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~R = 𝑓 → ([〈𝑥, 𝑦〉] ~R
<R [〈𝑣, 𝑢〉] ~R ↔
𝑓
<R [〈𝑣, 𝑢〉] ~R
)) |
5 | 3, 4 | imbi12d 233 |
. 2
⊢
([〈𝑥, 𝑦〉]
~R = 𝑓 → ((([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ∧
[〈𝑧, 𝑤〉]
~R <R [〈𝑣, 𝑢〉] ~R ) →
[〈𝑥, 𝑦〉]
~R <R [〈𝑣, 𝑢〉] ~R ) ↔
((𝑓
<R [〈𝑧, 𝑤〉] ~R ∧
[〈𝑧, 𝑤〉]
~R <R [〈𝑣, 𝑢〉] ~R ) →
𝑓
<R [〈𝑣, 𝑢〉] ~R
))) |
6 | | breq2 3986 |
. . . 4
⊢
([〈𝑧, 𝑤〉]
~R = 𝑔 → (𝑓 <R [〈𝑧, 𝑤〉] ~R ↔
𝑓
<R 𝑔)) |
7 | | breq1 3985 |
. . . 4
⊢
([〈𝑧, 𝑤〉]
~R = 𝑔 → ([〈𝑧, 𝑤〉] ~R
<R [〈𝑣, 𝑢〉] ~R ↔
𝑔
<R [〈𝑣, 𝑢〉] ~R
)) |
8 | 6, 7 | anbi12d 465 |
. . 3
⊢
([〈𝑧, 𝑤〉]
~R = 𝑔 → ((𝑓 <R [〈𝑧, 𝑤〉] ~R ∧
[〈𝑧, 𝑤〉]
~R <R [〈𝑣, 𝑢〉] ~R ) ↔
(𝑓
<R 𝑔 ∧ 𝑔 <R [〈𝑣, 𝑢〉] ~R
))) |
9 | 8 | imbi1d 230 |
. 2
⊢
([〈𝑧, 𝑤〉]
~R = 𝑔 → (((𝑓 <R [〈𝑧, 𝑤〉] ~R ∧
[〈𝑧, 𝑤〉]
~R <R [〈𝑣, 𝑢〉] ~R ) →
𝑓
<R [〈𝑣, 𝑢〉] ~R ) ↔
((𝑓
<R 𝑔 ∧ 𝑔 <R [〈𝑣, 𝑢〉] ~R ) →
𝑓
<R [〈𝑣, 𝑢〉] ~R
))) |
10 | | breq2 3986 |
. . . 4
⊢
([〈𝑣, 𝑢〉]
~R = ℎ → (𝑔 <R [〈𝑣, 𝑢〉] ~R ↔
𝑔
<R ℎ)) |
11 | 10 | anbi2d 460 |
. . 3
⊢
([〈𝑣, 𝑢〉]
~R = ℎ → ((𝑓 <R 𝑔 ∧ 𝑔 <R [〈𝑣, 𝑢〉] ~R ) ↔
(𝑓
<R 𝑔 ∧ 𝑔 <R ℎ))) |
12 | | breq2 3986 |
. . 3
⊢
([〈𝑣, 𝑢〉]
~R = ℎ → (𝑓 <R [〈𝑣, 𝑢〉] ~R ↔
𝑓
<R ℎ)) |
13 | 11, 12 | imbi12d 233 |
. 2
⊢
([〈𝑣, 𝑢〉]
~R = ℎ → (((𝑓 <R 𝑔 ∧ 𝑔 <R [〈𝑣, 𝑢〉] ~R ) →
𝑓
<R [〈𝑣, 𝑢〉] ~R ) ↔
((𝑓
<R 𝑔 ∧ 𝑔 <R ℎ) → 𝑓 <R ℎ))) |
14 | | ltsrprg 7688 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ↔
(𝑥
+P 𝑤)<P (𝑦 +P
𝑧))) |
15 | 14 | 3adant3 1007 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
([〈𝑥, 𝑦〉]
~R <R [〈𝑧, 𝑤〉] ~R ↔
(𝑥
+P 𝑤)<P (𝑦 +P
𝑧))) |
16 | | ltaprg 7560 |
. . . . . . . 8
⊢ ((𝑟 ∈ P ∧
𝑠 ∈ P
∧ 𝑡 ∈
P) → (𝑟<P 𝑠 ↔ (𝑡 +P 𝑟)<P
(𝑡
+P 𝑠))) |
17 | 16 | adantl 275 |
. . . . . . 7
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) ∧
(𝑟 ∈ P
∧ 𝑠 ∈
P ∧ 𝑡
∈ P)) → (𝑟<P 𝑠 ↔ (𝑡 +P 𝑟)<P
(𝑡
+P 𝑠))) |
18 | | simp1l 1011 |
. . . . . . . 8
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
𝑥 ∈
P) |
19 | | simp2r 1014 |
. . . . . . . 8
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
𝑤 ∈
P) |
20 | | addclpr 7478 |
. . . . . . . 8
⊢ ((𝑥 ∈ P ∧
𝑤 ∈ P)
→ (𝑥
+P 𝑤) ∈ P) |
21 | 18, 19, 20 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
(𝑥
+P 𝑤) ∈ P) |
22 | | simp1r 1012 |
. . . . . . . 8
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
𝑦 ∈
P) |
23 | | simp2l 1013 |
. . . . . . . 8
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
𝑧 ∈
P) |
24 | | addclpr 7478 |
. . . . . . . 8
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (𝑦
+P 𝑧) ∈ P) |
25 | 22, 23, 24 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
(𝑦
+P 𝑧) ∈ P) |
26 | | simp3r 1016 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
𝑢 ∈
P) |
27 | | addcomprg 7519 |
. . . . . . . 8
⊢ ((𝑟 ∈ P ∧
𝑠 ∈ P)
→ (𝑟
+P 𝑠) = (𝑠 +P 𝑟)) |
28 | 27 | adantl 275 |
. . . . . . 7
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) ∧
(𝑟 ∈ P
∧ 𝑠 ∈
P)) → (𝑟
+P 𝑠) = (𝑠 +P 𝑟)) |
29 | 17, 21, 25, 26, 28 | caovord2d 6011 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
((𝑥
+P 𝑤)<P (𝑦 +P
𝑧) ↔ ((𝑥 +P
𝑤)
+P 𝑢)<P ((𝑦 +P
𝑧)
+P 𝑢))) |
30 | | addassprg 7520 |
. . . . . . . 8
⊢ ((𝑥 ∈ P ∧
𝑤 ∈ P
∧ 𝑢 ∈
P) → ((𝑥
+P 𝑤) +P 𝑢) = (𝑥 +P (𝑤 +P
𝑢))) |
31 | 18, 19, 26, 30 | syl3anc 1228 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
((𝑥
+P 𝑤) +P 𝑢) = (𝑥 +P (𝑤 +P
𝑢))) |
32 | | addassprg 7520 |
. . . . . . . 8
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P
∧ 𝑢 ∈
P) → ((𝑦
+P 𝑧) +P 𝑢) = (𝑦 +P (𝑧 +P
𝑢))) |
33 | 22, 23, 26, 32 | syl3anc 1228 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
((𝑦
+P 𝑧) +P 𝑢) = (𝑦 +P (𝑧 +P
𝑢))) |
34 | 31, 33 | breq12d 3995 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
(((𝑥
+P 𝑤) +P 𝑢)<P
((𝑦
+P 𝑧) +P 𝑢) ↔ (𝑥 +P (𝑤 +P
𝑢))<P (𝑦 +P
(𝑧
+P 𝑢)))) |
35 | 29, 34 | bitrd 187 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
((𝑥
+P 𝑤)<P (𝑦 +P
𝑧) ↔ (𝑥 +P
(𝑤
+P 𝑢))<P (𝑦 +P
(𝑧
+P 𝑢)))) |
36 | 15, 35 | bitrd 187 |
. . . 4
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
([〈𝑥, 𝑦〉]
~R <R [〈𝑧, 𝑤〉] ~R ↔
(𝑥
+P (𝑤 +P 𝑢))<P
(𝑦
+P (𝑧 +P 𝑢)))) |
37 | | ltsrprg 7688 |
. . . . . 6
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝑣 ∈
P ∧ 𝑢
∈ P)) → ([〈𝑧, 𝑤〉] ~R
<R [〈𝑣, 𝑢〉] ~R ↔
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣))) |
38 | 37 | 3adant1 1005 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
([〈𝑧, 𝑤〉]
~R <R [〈𝑣, 𝑢〉] ~R ↔
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣))) |
39 | | addclpr 7478 |
. . . . . . 7
⊢ ((𝑧 ∈ P ∧
𝑢 ∈ P)
→ (𝑧
+P 𝑢) ∈ P) |
40 | 23, 26, 39 | syl2anc 409 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
(𝑧
+P 𝑢) ∈ P) |
41 | | simp3l 1015 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
𝑣 ∈
P) |
42 | | addclpr 7478 |
. . . . . . 7
⊢ ((𝑤 ∈ P ∧
𝑣 ∈ P)
→ (𝑤
+P 𝑣) ∈ P) |
43 | 19, 41, 42 | syl2anc 409 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
(𝑤
+P 𝑣) ∈ P) |
44 | | ltaprg 7560 |
. . . . . 6
⊢ (((𝑧 +P
𝑢) ∈ P
∧ (𝑤
+P 𝑣) ∈ P ∧ 𝑦 ∈ P) →
((𝑧
+P 𝑢)<P (𝑤 +P
𝑣) ↔ (𝑦 +P
(𝑧
+P 𝑢))<P (𝑦 +P
(𝑤
+P 𝑣)))) |
45 | 40, 43, 22, 44 | syl3anc 1228 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
((𝑧
+P 𝑢)<P (𝑤 +P
𝑣) ↔ (𝑦 +P
(𝑧
+P 𝑢))<P (𝑦 +P
(𝑤
+P 𝑣)))) |
46 | 38, 45 | bitrd 187 |
. . . 4
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
([〈𝑧, 𝑤〉]
~R <R [〈𝑣, 𝑢〉] ~R ↔
(𝑦
+P (𝑧 +P 𝑢))<P
(𝑦
+P (𝑤 +P 𝑣)))) |
47 | 36, 46 | anbi12d 465 |
. . 3
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
(([〈𝑥, 𝑦〉]
~R <R [〈𝑧, 𝑤〉] ~R ∧
[〈𝑧, 𝑤〉]
~R <R [〈𝑣, 𝑢〉] ~R ) ↔
((𝑥
+P (𝑤 +P 𝑢))<P
(𝑦
+P (𝑧 +P 𝑢)) ∧ (𝑦 +P (𝑧 +P
𝑢))<P (𝑦 +P
(𝑤
+P 𝑣))))) |
48 | | ltsopr 7537 |
. . . . 5
⊢
<P Or P |
49 | | ltrelpr 7446 |
. . . . 5
⊢
<P ⊆ (P ×
P) |
50 | 48, 49 | sotri 4999 |
. . . 4
⊢ (((𝑥 +P
(𝑤
+P 𝑢))<P (𝑦 +P
(𝑧
+P 𝑢)) ∧ (𝑦 +P (𝑧 +P
𝑢))<P (𝑦 +P
(𝑤
+P 𝑣))) → (𝑥 +P (𝑤 +P
𝑢))<P (𝑦 +P
(𝑤
+P 𝑣))) |
51 | | addclpr 7478 |
. . . . . . . 8
⊢ ((𝑥 ∈ P ∧
𝑢 ∈ P)
→ (𝑥
+P 𝑢) ∈ P) |
52 | 18, 26, 51 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
(𝑥
+P 𝑢) ∈ P) |
53 | | addclpr 7478 |
. . . . . . . 8
⊢ ((𝑦 ∈ P ∧
𝑣 ∈ P)
→ (𝑦
+P 𝑣) ∈ P) |
54 | 22, 41, 53 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
(𝑦
+P 𝑣) ∈ P) |
55 | | ltaprg 7560 |
. . . . . . 7
⊢ (((𝑥 +P
𝑢) ∈ P
∧ (𝑦
+P 𝑣) ∈ P ∧ 𝑤 ∈ P) →
((𝑥
+P 𝑢)<P (𝑦 +P
𝑣) ↔ (𝑤 +P
(𝑥
+P 𝑢))<P (𝑤 +P
(𝑦
+P 𝑣)))) |
56 | 52, 54, 19, 55 | syl3anc 1228 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
((𝑥
+P 𝑢)<P (𝑦 +P
𝑣) ↔ (𝑤 +P
(𝑥
+P 𝑢))<P (𝑤 +P
(𝑦
+P 𝑣)))) |
57 | 56 | biimprd 157 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
((𝑤
+P (𝑥 +P 𝑢))<P
(𝑤
+P (𝑦 +P 𝑣)) → (𝑥 +P 𝑢)<P
(𝑦
+P 𝑣))) |
58 | | addassprg 7520 |
. . . . . . . 8
⊢ ((𝑟 ∈ P ∧
𝑠 ∈ P
∧ 𝑡 ∈
P) → ((𝑟
+P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P
𝑡))) |
59 | 58 | adantl 275 |
. . . . . . 7
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) ∧
(𝑟 ∈ P
∧ 𝑠 ∈
P ∧ 𝑡
∈ P)) → ((𝑟 +P 𝑠) +P
𝑡) = (𝑟 +P (𝑠 +P
𝑡))) |
60 | 18, 19, 26, 28, 59 | caov12d 6023 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
(𝑥
+P (𝑤 +P 𝑢)) = (𝑤 +P (𝑥 +P
𝑢))) |
61 | 22, 19, 41, 28, 59 | caov12d 6023 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
(𝑦
+P (𝑤 +P 𝑣)) = (𝑤 +P (𝑦 +P
𝑣))) |
62 | 60, 61 | breq12d 3995 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
((𝑥
+P (𝑤 +P 𝑢))<P
(𝑦
+P (𝑤 +P 𝑣)) ↔ (𝑤 +P (𝑥 +P
𝑢))<P (𝑤 +P
(𝑦
+P 𝑣)))) |
63 | | ltsrprg 7688 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑣 ∈
P ∧ 𝑢
∈ P)) → ([〈𝑥, 𝑦〉] ~R
<R [〈𝑣, 𝑢〉] ~R ↔
(𝑥
+P 𝑢)<P (𝑦 +P
𝑣))) |
64 | 63 | 3adant2 1006 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
([〈𝑥, 𝑦〉]
~R <R [〈𝑣, 𝑢〉] ~R ↔
(𝑥
+P 𝑢)<P (𝑦 +P
𝑣))) |
65 | 57, 62, 64 | 3imtr4d 202 |
. . . 4
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
((𝑥
+P (𝑤 +P 𝑢))<P
(𝑦
+P (𝑤 +P 𝑣)) → [〈𝑥, 𝑦〉] ~R
<R [〈𝑣, 𝑢〉] ~R
)) |
66 | 50, 65 | syl5 32 |
. . 3
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
(((𝑥
+P (𝑤 +P 𝑢))<P
(𝑦
+P (𝑧 +P 𝑢)) ∧ (𝑦 +P (𝑧 +P
𝑢))<P (𝑦 +P
(𝑤
+P 𝑣))) → [〈𝑥, 𝑦〉] ~R
<R [〈𝑣, 𝑢〉] ~R
)) |
67 | 47, 66 | sylbid 149 |
. 2
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) →
(([〈𝑥, 𝑦〉]
~R <R [〈𝑧, 𝑤〉] ~R ∧
[〈𝑧, 𝑤〉]
~R <R [〈𝑣, 𝑢〉] ~R ) →
[〈𝑥, 𝑦〉]
~R <R [〈𝑣, 𝑢〉] ~R
)) |
68 | 1, 5, 9, 13, 67 | 3ecoptocl 6590 |
1
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R
∧ ℎ ∈
R) → ((𝑓
<R 𝑔 ∧ 𝑔 <R ℎ) → 𝑓 <R ℎ)) |