ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addextpr GIF version

Theorem addextpr 7377
Description: Strong extensionality of addition (ordering version). This is similar to addext 8290 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
Assertion
Ref Expression
addextpr (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶𝐵<P 𝐷)))

Proof of Theorem addextpr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7293 . . . 4 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
21adantr 272 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴 +P 𝐵) ∈ P)
3 addclpr 7293 . . . 4 ((𝐶P𝐷P) → (𝐶 +P 𝐷) ∈ P)
43adantl 273 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐶 +P 𝐷) ∈ P)
5 simprl 503 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐶P)
6 simplr 502 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐵P)
7 addclpr 7293 . . . 4 ((𝐶P𝐵P) → (𝐶 +P 𝐵) ∈ P)
85, 6, 7syl2anc 406 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐶 +P 𝐵) ∈ P)
9 ltsopr 7352 . . . 4 <P Or P
10 sowlin 4202 . . . 4 ((<P Or P ∧ ((𝐴 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐷) ∈ P ∧ (𝐶 +P 𝐵) ∈ P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
119, 10mpan 418 . . 3 (((𝐴 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐷) ∈ P ∧ (𝐶 +P 𝐵) ∈ P) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
122, 4, 8, 11syl3anc 1199 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
13 simpll 501 . . . . 5 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐴P)
14 ltaprg 7375 . . . . 5 ((𝐴P𝐶P𝐵P) → (𝐴<P 𝐶 ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶)))
1513, 5, 6, 14syl3anc 1199 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴<P 𝐶 ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶)))
16 addcomprg 7334 . . . . . . 7 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
1716adantl 273 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
1817, 13, 6caovcomd 5881 . . . . 5 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
1917, 5, 6caovcomd 5881 . . . . 5 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐶 +P 𝐵) = (𝐵 +P 𝐶))
2018, 19breq12d 3908 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶)))
2115, 20bitr4d 190 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴<P 𝐶 ↔ (𝐴 +P 𝐵)<P (𝐶 +P 𝐵)))
22 simprr 504 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐷P)
23 ltaprg 7375 . . . 4 ((𝐵P𝐷P𝐶P) → (𝐵<P 𝐷 ↔ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))
246, 22, 5, 23syl3anc 1199 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐵<P 𝐷 ↔ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))
2521, 24orbi12d 765 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴<P 𝐶𝐵<P 𝐷) ↔ ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
2612, 25sylibrd 168 1 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶𝐵<P 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 680  w3a 945   = wceq 1314  wcel 1463   class class class wbr 3895   Or wor 4177  (class class class)co 5728  Pcnp 7047   +P cpp 7049  <P cltp 7051
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-eprel 4171  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-1o 6267  df-2o 6268  df-oadd 6271  df-omul 6272  df-er 6383  df-ec 6385  df-qs 6389  df-ni 7060  df-pli 7061  df-mi 7062  df-lti 7063  df-plpq 7100  df-mpq 7101  df-enq 7103  df-nqqs 7104  df-plqqs 7105  df-mqqs 7106  df-1nqqs 7107  df-rq 7108  df-ltnqqs 7109  df-enq0 7180  df-nq0 7181  df-0nq0 7182  df-plq0 7183  df-mq0 7184  df-inp 7222  df-iplp 7224  df-iltp 7226
This theorem is referenced by:  mulextsr1lem  7522
  Copyright terms: Public domain W3C validator