| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addextpr | GIF version | ||
| Description: Strong extensionality of addition (ordering version). This is similar to addext 8725 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| addextpr | ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶 ∨ 𝐵<P 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addclpr 7692 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ P) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (𝐴 +P 𝐵) ∈ P) |
| 3 | addclpr 7692 | . . . 4 ⊢ ((𝐶 ∈ P ∧ 𝐷 ∈ P) → (𝐶 +P 𝐷) ∈ P) | |
| 4 | 3 | adantl 277 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (𝐶 +P 𝐷) ∈ P) |
| 5 | simprl 529 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → 𝐶 ∈ P) | |
| 6 | simplr 528 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → 𝐵 ∈ P) | |
| 7 | addclpr 7692 | . . . 4 ⊢ ((𝐶 ∈ P ∧ 𝐵 ∈ P) → (𝐶 +P 𝐵) ∈ P) | |
| 8 | 5, 6, 7 | syl2anc 411 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (𝐶 +P 𝐵) ∈ P) |
| 9 | ltsopr 7751 | . . . 4 ⊢ <P Or P | |
| 10 | sowlin 4388 | . . . 4 ⊢ ((<P Or P ∧ ((𝐴 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐷) ∈ P ∧ (𝐶 +P 𝐵) ∈ P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))) | |
| 11 | 9, 10 | mpan 424 | . . 3 ⊢ (((𝐴 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐷) ∈ P ∧ (𝐶 +P 𝐵) ∈ P) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))) |
| 12 | 2, 4, 8, 11 | syl3anc 1252 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))) |
| 13 | simpll 527 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → 𝐴 ∈ P) | |
| 14 | ltaprg 7774 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐶 ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶))) | |
| 15 | 13, 5, 6, 14 | syl3anc 1252 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (𝐴<P 𝐶 ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶))) |
| 16 | addcomprg 7733 | . . . . . . 7 ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓)) | |
| 17 | 16 | adantl 277 | . . . . . 6 ⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓)) |
| 18 | 17, 13, 6 | caovcomd 6133 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴)) |
| 19 | 17, 5, 6 | caovcomd 6133 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (𝐶 +P 𝐵) = (𝐵 +P 𝐶)) |
| 20 | 18, 19 | breq12d 4075 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶))) |
| 21 | 15, 20 | bitr4d 191 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (𝐴<P 𝐶 ↔ (𝐴 +P 𝐵)<P (𝐶 +P 𝐵))) |
| 22 | simprr 531 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → 𝐷 ∈ P) | |
| 23 | ltaprg 7774 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐷 ∈ P ∧ 𝐶 ∈ P) → (𝐵<P 𝐷 ↔ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))) | |
| 24 | 6, 22, 5, 23 | syl3anc 1252 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (𝐵<P 𝐷 ↔ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))) |
| 25 | 21, 24 | orbi12d 797 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ((𝐴<P 𝐶 ∨ 𝐵<P 𝐷) ↔ ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))) |
| 26 | 12, 25 | sylibrd 169 | 1 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶 ∨ 𝐵<P 𝐷))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 712 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 Or wor 4363 (class class class)co 5974 Pcnp 7446 +P cpp 7448 <P cltp 7450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-eprel 4357 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-1o 6532 df-2o 6533 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-pli 7460 df-mi 7461 df-lti 7462 df-plpq 7499 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-plqqs 7504 df-mqqs 7505 df-1nqqs 7506 df-rq 7507 df-ltnqqs 7508 df-enq0 7579 df-nq0 7580 df-0nq0 7581 df-plq0 7582 df-mq0 7583 df-inp 7621 df-iplp 7623 df-iltp 7625 |
| This theorem is referenced by: mulextsr1lem 7935 |
| Copyright terms: Public domain | W3C validator |