ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addextpr GIF version

Theorem addextpr 7622
Description: Strong extensionality of addition (ordering version). This is similar to addext 8569 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
Assertion
Ref Expression
addextpr (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶𝐵<P 𝐷)))

Proof of Theorem addextpr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7538 . . . 4 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
21adantr 276 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴 +P 𝐵) ∈ P)
3 addclpr 7538 . . . 4 ((𝐶P𝐷P) → (𝐶 +P 𝐷) ∈ P)
43adantl 277 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐶 +P 𝐷) ∈ P)
5 simprl 529 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐶P)
6 simplr 528 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐵P)
7 addclpr 7538 . . . 4 ((𝐶P𝐵P) → (𝐶 +P 𝐵) ∈ P)
85, 6, 7syl2anc 411 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐶 +P 𝐵) ∈ P)
9 ltsopr 7597 . . . 4 <P Or P
10 sowlin 4322 . . . 4 ((<P Or P ∧ ((𝐴 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐷) ∈ P ∧ (𝐶 +P 𝐵) ∈ P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
119, 10mpan 424 . . 3 (((𝐴 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐷) ∈ P ∧ (𝐶 +P 𝐵) ∈ P) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
122, 4, 8, 11syl3anc 1238 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
13 simpll 527 . . . . 5 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐴P)
14 ltaprg 7620 . . . . 5 ((𝐴P𝐶P𝐵P) → (𝐴<P 𝐶 ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶)))
1513, 5, 6, 14syl3anc 1238 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴<P 𝐶 ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶)))
16 addcomprg 7579 . . . . . . 7 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
1716adantl 277 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
1817, 13, 6caovcomd 6033 . . . . 5 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
1917, 5, 6caovcomd 6033 . . . . 5 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐶 +P 𝐵) = (𝐵 +P 𝐶))
2018, 19breq12d 4018 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶)))
2115, 20bitr4d 191 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴<P 𝐶 ↔ (𝐴 +P 𝐵)<P (𝐶 +P 𝐵)))
22 simprr 531 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐷P)
23 ltaprg 7620 . . . 4 ((𝐵P𝐷P𝐶P) → (𝐵<P 𝐷 ↔ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))
246, 22, 5, 23syl3anc 1238 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐵<P 𝐷 ↔ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))
2521, 24orbi12d 793 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴<P 𝐶𝐵<P 𝐷) ↔ ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
2612, 25sylibrd 169 1 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶𝐵<P 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4005   Or wor 4297  (class class class)co 5877  Pcnp 7292   +P cpp 7294  <P cltp 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-iplp 7469  df-iltp 7471
This theorem is referenced by:  mulextsr1lem  7781
  Copyright terms: Public domain W3C validator