![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addextpr | GIF version |
Description: Strong extensionality of addition (ordering version). This is similar to addext 8290 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.) |
Ref | Expression |
---|---|
addextpr | ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶 ∨ 𝐵<P 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addclpr 7293 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ P) | |
2 | 1 | adantr 272 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (𝐴 +P 𝐵) ∈ P) |
3 | addclpr 7293 | . . . 4 ⊢ ((𝐶 ∈ P ∧ 𝐷 ∈ P) → (𝐶 +P 𝐷) ∈ P) | |
4 | 3 | adantl 273 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (𝐶 +P 𝐷) ∈ P) |
5 | simprl 503 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → 𝐶 ∈ P) | |
6 | simplr 502 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → 𝐵 ∈ P) | |
7 | addclpr 7293 | . . . 4 ⊢ ((𝐶 ∈ P ∧ 𝐵 ∈ P) → (𝐶 +P 𝐵) ∈ P) | |
8 | 5, 6, 7 | syl2anc 406 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (𝐶 +P 𝐵) ∈ P) |
9 | ltsopr 7352 | . . . 4 ⊢ <P Or P | |
10 | sowlin 4202 | . . . 4 ⊢ ((<P Or P ∧ ((𝐴 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐷) ∈ P ∧ (𝐶 +P 𝐵) ∈ P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))) | |
11 | 9, 10 | mpan 418 | . . 3 ⊢ (((𝐴 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐷) ∈ P ∧ (𝐶 +P 𝐵) ∈ P) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))) |
12 | 2, 4, 8, 11 | syl3anc 1199 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))) |
13 | simpll 501 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → 𝐴 ∈ P) | |
14 | ltaprg 7375 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐶 ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶))) | |
15 | 13, 5, 6, 14 | syl3anc 1199 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (𝐴<P 𝐶 ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶))) |
16 | addcomprg 7334 | . . . . . . 7 ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓)) | |
17 | 16 | adantl 273 | . . . . . 6 ⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓)) |
18 | 17, 13, 6 | caovcomd 5881 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴)) |
19 | 17, 5, 6 | caovcomd 5881 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (𝐶 +P 𝐵) = (𝐵 +P 𝐶)) |
20 | 18, 19 | breq12d 3908 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶))) |
21 | 15, 20 | bitr4d 190 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (𝐴<P 𝐶 ↔ (𝐴 +P 𝐵)<P (𝐶 +P 𝐵))) |
22 | simprr 504 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → 𝐷 ∈ P) | |
23 | ltaprg 7375 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐷 ∈ P ∧ 𝐶 ∈ P) → (𝐵<P 𝐷 ↔ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))) | |
24 | 6, 22, 5, 23 | syl3anc 1199 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (𝐵<P 𝐷 ↔ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))) |
25 | 21, 24 | orbi12d 765 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ((𝐴<P 𝐶 ∨ 𝐵<P 𝐷) ↔ ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))) |
26 | 12, 25 | sylibrd 168 | 1 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶 ∨ 𝐵<P 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 680 ∧ w3a 945 = wceq 1314 ∈ wcel 1463 class class class wbr 3895 Or wor 4177 (class class class)co 5728 Pcnp 7047 +P cpp 7049 <P cltp 7051 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-eprel 4171 df-id 4175 df-po 4178 df-iso 4179 df-iord 4248 df-on 4250 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-recs 6156 df-irdg 6221 df-1o 6267 df-2o 6268 df-oadd 6271 df-omul 6272 df-er 6383 df-ec 6385 df-qs 6389 df-ni 7060 df-pli 7061 df-mi 7062 df-lti 7063 df-plpq 7100 df-mpq 7101 df-enq 7103 df-nqqs 7104 df-plqqs 7105 df-mqqs 7106 df-1nqqs 7107 df-rq 7108 df-ltnqqs 7109 df-enq0 7180 df-nq0 7181 df-0nq0 7182 df-plq0 7183 df-mq0 7184 df-inp 7222 df-iplp 7224 df-iltp 7226 |
This theorem is referenced by: mulextsr1lem 7522 |
Copyright terms: Public domain | W3C validator |