ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addextpr GIF version

Theorem addextpr 7776
Description: Strong extensionality of addition (ordering version). This is similar to addext 8725 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
Assertion
Ref Expression
addextpr (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶𝐵<P 𝐷)))

Proof of Theorem addextpr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7692 . . . 4 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
21adantr 276 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴 +P 𝐵) ∈ P)
3 addclpr 7692 . . . 4 ((𝐶P𝐷P) → (𝐶 +P 𝐷) ∈ P)
43adantl 277 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐶 +P 𝐷) ∈ P)
5 simprl 529 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐶P)
6 simplr 528 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐵P)
7 addclpr 7692 . . . 4 ((𝐶P𝐵P) → (𝐶 +P 𝐵) ∈ P)
85, 6, 7syl2anc 411 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐶 +P 𝐵) ∈ P)
9 ltsopr 7751 . . . 4 <P Or P
10 sowlin 4388 . . . 4 ((<P Or P ∧ ((𝐴 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐷) ∈ P ∧ (𝐶 +P 𝐵) ∈ P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
119, 10mpan 424 . . 3 (((𝐴 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐷) ∈ P ∧ (𝐶 +P 𝐵) ∈ P) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
122, 4, 8, 11syl3anc 1252 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
13 simpll 527 . . . . 5 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐴P)
14 ltaprg 7774 . . . . 5 ((𝐴P𝐶P𝐵P) → (𝐴<P 𝐶 ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶)))
1513, 5, 6, 14syl3anc 1252 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴<P 𝐶 ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶)))
16 addcomprg 7733 . . . . . . 7 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
1716adantl 277 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
1817, 13, 6caovcomd 6133 . . . . 5 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
1917, 5, 6caovcomd 6133 . . . . 5 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐶 +P 𝐵) = (𝐵 +P 𝐶))
2018, 19breq12d 4075 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶)))
2115, 20bitr4d 191 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴<P 𝐶 ↔ (𝐴 +P 𝐵)<P (𝐶 +P 𝐵)))
22 simprr 531 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐷P)
23 ltaprg 7774 . . . 4 ((𝐵P𝐷P𝐶P) → (𝐵<P 𝐷 ↔ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))
246, 22, 5, 23syl3anc 1252 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐵<P 𝐷 ↔ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))
2521, 24orbi12d 797 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴<P 𝐶𝐵<P 𝐷) ↔ ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
2612, 25sylibrd 169 1 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶𝐵<P 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 712  w3a 983   = wceq 1375  wcel 2180   class class class wbr 4062   Or wor 4363  (class class class)co 5974  Pcnp 7446   +P cpp 7448  <P cltp 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-2o 6533  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-pli 7460  df-mi 7461  df-lti 7462  df-plpq 7499  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-plqqs 7504  df-mqqs 7505  df-1nqqs 7506  df-rq 7507  df-ltnqqs 7508  df-enq0 7579  df-nq0 7580  df-0nq0 7581  df-plq0 7582  df-mq0 7583  df-inp 7621  df-iplp 7623  df-iltp 7625
This theorem is referenced by:  mulextsr1lem  7935
  Copyright terms: Public domain W3C validator