ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addextpr GIF version

Theorem addextpr 7127
Description: Strong extensionality of addition (ordering version). This is similar to addext 8031 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
Assertion
Ref Expression
addextpr (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶𝐵<P 𝐷)))

Proof of Theorem addextpr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7043 . . . 4 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
21adantr 270 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴 +P 𝐵) ∈ P)
3 addclpr 7043 . . . 4 ((𝐶P𝐷P) → (𝐶 +P 𝐷) ∈ P)
43adantl 271 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐶 +P 𝐷) ∈ P)
5 simprl 498 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐶P)
6 simplr 497 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐵P)
7 addclpr 7043 . . . 4 ((𝐶P𝐵P) → (𝐶 +P 𝐵) ∈ P)
85, 6, 7syl2anc 403 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐶 +P 𝐵) ∈ P)
9 ltsopr 7102 . . . 4 <P Or P
10 sowlin 4123 . . . 4 ((<P Or P ∧ ((𝐴 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐷) ∈ P ∧ (𝐶 +P 𝐵) ∈ P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
119, 10mpan 415 . . 3 (((𝐴 +P 𝐵) ∈ P ∧ (𝐶 +P 𝐷) ∈ P ∧ (𝐶 +P 𝐵) ∈ P) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
122, 4, 8, 11syl3anc 1172 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
13 simpll 496 . . . . 5 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐴P)
14 ltaprg 7125 . . . . 5 ((𝐴P𝐶P𝐵P) → (𝐴<P 𝐶 ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶)))
1513, 5, 6, 14syl3anc 1172 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴<P 𝐶 ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶)))
16 addcomprg 7084 . . . . . . 7 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
1716adantl 271 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
1817, 13, 6caovcomd 5760 . . . . 5 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
1917, 5, 6caovcomd 5760 . . . . 5 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐶 +P 𝐵) = (𝐵 +P 𝐶))
2018, 19breq12d 3835 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ↔ (𝐵 +P 𝐴)<P (𝐵 +P 𝐶)))
2115, 20bitr4d 189 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐴<P 𝐶 ↔ (𝐴 +P 𝐵)<P (𝐶 +P 𝐵)))
22 simprr 499 . . . 4 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → 𝐷P)
23 ltaprg 7125 . . . 4 ((𝐵P𝐷P𝐶P) → (𝐵<P 𝐷 ↔ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))
246, 22, 5, 23syl3anc 1172 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐵<P 𝐷 ↔ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷)))
2521, 24orbi12d 740 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴<P 𝐶𝐵<P 𝐷) ↔ ((𝐴 +P 𝐵)<P (𝐶 +P 𝐵) ∨ (𝐶 +P 𝐵)<P (𝐶 +P 𝐷))))
2612, 25sylibrd 167 1 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶𝐵<P 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 662  w3a 922   = wceq 1287  wcel 1436   class class class wbr 3822   Or wor 4098  (class class class)co 5615  Pcnp 6797   +P cpp 6799  <P cltp 6801
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3931  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-iun 3717  df-br 3823  df-opab 3877  df-mpt 3878  df-tr 3914  df-eprel 4092  df-id 4096  df-po 4099  df-iso 4100  df-iord 4169  df-on 4171  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-1st 5870  df-2nd 5871  df-recs 6026  df-irdg 6091  df-1o 6137  df-2o 6138  df-oadd 6141  df-omul 6142  df-er 6246  df-ec 6248  df-qs 6252  df-ni 6810  df-pli 6811  df-mi 6812  df-lti 6813  df-plpq 6850  df-mpq 6851  df-enq 6853  df-nqqs 6854  df-plqqs 6855  df-mqqs 6856  df-1nqqs 6857  df-rq 6858  df-ltnqqs 6859  df-enq0 6930  df-nq0 6931  df-0nq0 6932  df-plq0 6933  df-mq0 6934  df-inp 6972  df-iplp 6974  df-iltp 6976
This theorem is referenced by:  mulextsr1lem  7272
  Copyright terms: Public domain W3C validator