ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1olemqsumkj GIF version

Theorem seq3f1olemqsumkj 10211
Description: Lemma for seq3f1o 10217. 𝑄 gives the same sum as 𝐽 in the range (𝐾...(𝐽𝐾)). (Contributed by Jim Kingdon, 29-Aug-2022.)
Hypotheses
Ref Expression
iseqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqf1o.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
iseqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
iseqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1o.6 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1o.7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1olemstep.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemstep.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemstep.const (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
iseqf1olemnk (𝜑𝐾 ≠ (𝐽𝐾))
iseqf1olemqres.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemqsumk.p 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
seq3f1olemqsumkj (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘(𝐽𝐾)) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)))
Distinct variable groups:   𝑢,𝐽   𝑢,𝐾,𝑥   𝑢,𝑀,𝑥   𝑢,𝑁   𝑥,𝐽   𝑥,𝑄   𝜑,𝑥   𝑥, + ,𝑦,𝑧   𝑓,𝐺,𝑥   𝑓,𝐽,𝑦,𝑧   𝑦,𝐾,𝑧   𝑓,𝑀   𝑓,𝑁,𝑥   𝑥,𝑃,𝑦,𝑧   𝑄,𝑓,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑢   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝑃(𝑢,𝑓)   + (𝑢,𝑓)   𝑄(𝑢)   𝑆(𝑢,𝑓)   𝐹(𝑥,𝑦,𝑧,𝑢,𝑓)   𝐺(𝑦,𝑧,𝑢)   𝐾(𝑓)   𝑀(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem seq3f1olemqsumkj
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 iseqf1olemstep.k . . . . . . 7 (𝜑𝐾 ∈ (𝑀...𝑁))
2 elfzelz 9746 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
31, 2syl 14 . . . . . 6 (𝜑𝐾 ∈ ℤ)
4 iseqf1olemstep.j . . . . . . . . . . 11 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
5 f1ocnv 5346 . . . . . . . . . . 11 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
64, 5syl 14 . . . . . . . . . 10 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
7 f1of 5333 . . . . . . . . . 10 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
86, 7syl 14 . . . . . . . . 9 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
98, 1ffvelrnd 5522 . . . . . . . 8 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
10 elfzelz 9746 . . . . . . . 8 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
119, 10syl 14 . . . . . . 7 (𝜑 → (𝐽𝐾) ∈ ℤ)
12 peano2zm 9043 . . . . . . 7 ((𝐽𝐾) ∈ ℤ → ((𝐽𝐾) − 1) ∈ ℤ)
1311, 12syl 14 . . . . . 6 (𝜑 → ((𝐽𝐾) − 1) ∈ ℤ)
14 iseqf1o.4 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
15 iseqf1olemstep.const . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
16 iseqf1olemnk . . . . . . . 8 (𝜑𝐾 ≠ (𝐽𝐾))
1714, 1, 4, 15, 16iseqf1olemklt 10198 . . . . . . 7 (𝜑𝐾 < (𝐽𝐾))
18 zltlem1 9062 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → (𝐾 < (𝐽𝐾) ↔ 𝐾 ≤ ((𝐽𝐾) − 1)))
193, 11, 18syl2anc 406 . . . . . . 7 (𝜑 → (𝐾 < (𝐽𝐾) ↔ 𝐾 ≤ ((𝐽𝐾) − 1)))
2017, 19mpbid 146 . . . . . 6 (𝜑𝐾 ≤ ((𝐽𝐾) − 1))
21 eluz2 9281 . . . . . 6 (((𝐽𝐾) − 1) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ ((𝐽𝐾) − 1) ∈ ℤ ∧ 𝐾 ≤ ((𝐽𝐾) − 1)))
223, 13, 20, 21syl3anbrc 1148 . . . . 5 (𝜑 → ((𝐽𝐾) − 1) ∈ (ℤ𝐾))
23 1zzd 9032 . . . . 5 (𝜑 → 1 ∈ ℤ)
241adantr 272 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾 ∈ (𝑀...𝑁))
254adantr 272 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
26 elfzel1 9745 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
271, 26syl 14 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
2827adantr 272 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑀 ∈ ℤ)
29 elfzel2 9744 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
301, 29syl 14 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
3130adantr 272 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑁 ∈ ℤ)
32 elfzelz 9746 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝐾...((𝐽𝐾) − 1)) → 𝑣 ∈ ℤ)
3332adantl 273 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ∈ ℤ)
3433peano2zd 9127 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ∈ ℤ)
3528, 31, 343jca 1144 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑣 + 1) ∈ ℤ))
3628zred 9124 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑀 ∈ ℝ)
3733zred 9124 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ∈ ℝ)
3834zred 9124 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ∈ ℝ)
393zred 9124 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ ℝ)
4039adantr 272 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾 ∈ ℝ)
41 elfzle1 9747 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)
421, 41syl 14 . . . . . . . . . . . . . . 15 (𝜑𝑀𝐾)
4342adantr 272 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑀𝐾)
44 elfzle1 9747 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐾...((𝐽𝐾) − 1)) → 𝐾𝑣)
4544adantl 273 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾𝑣)
4636, 40, 37, 43, 45letrd 7850 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑀𝑣)
4737lep1d 8646 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ≤ (𝑣 + 1))
4836, 37, 38, 46, 47letrd 7850 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑀 ≤ (𝑣 + 1))
4911zred 9124 . . . . . . . . . . . . . 14 (𝜑 → (𝐽𝐾) ∈ ℝ)
5049adantr 272 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽𝐾) ∈ ℝ)
5131zred 9124 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑁 ∈ ℝ)
52 elfzle2 9748 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐾...((𝐽𝐾) − 1)) → 𝑣 ≤ ((𝐽𝐾) − 1))
5352adantl 273 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ≤ ((𝐽𝐾) − 1))
54 1red 7745 . . . . . . . . . . . . . . 15 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 1 ∈ ℝ)
55 leaddsub 8164 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐽𝐾) ∈ ℝ) → ((𝑣 + 1) ≤ (𝐽𝐾) ↔ 𝑣 ≤ ((𝐽𝐾) − 1)))
5637, 54, 50, 55syl3anc 1199 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ((𝑣 + 1) ≤ (𝐽𝐾) ↔ 𝑣 ≤ ((𝐽𝐾) − 1)))
5753, 56mpbird 166 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ≤ (𝐽𝐾))
58 elfzle2 9748 . . . . . . . . . . . . . . 15 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ≤ 𝑁)
599, 58syl 14 . . . . . . . . . . . . . 14 (𝜑 → (𝐽𝐾) ≤ 𝑁)
6059adantr 272 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽𝐾) ≤ 𝑁)
6138, 50, 51, 57, 60letrd 7850 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ≤ 𝑁)
6248, 61jca 302 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑀 ≤ (𝑣 + 1) ∧ (𝑣 + 1) ≤ 𝑁))
63 elfz2 9737 . . . . . . . . . . 11 ((𝑣 + 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑣 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑣 + 1) ∧ (𝑣 + 1) ≤ 𝑁)))
6435, 62, 63sylanbrc 411 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ∈ (𝑀...𝑁))
65 iseqf1olemqres.q . . . . . . . . . 10 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
6624, 25, 64, 65iseqf1olemqval 10200 . . . . . . . . 9 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑄‘(𝑣 + 1)) = if((𝑣 + 1) ∈ (𝐾...(𝐽𝐾)), if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))), (𝐽‘(𝑣 + 1))))
6724, 2syl 14 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾 ∈ ℤ)
6811adantr 272 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽𝐾) ∈ ℤ)
6967, 68, 343jca 1144 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ (𝑣 + 1) ∈ ℤ))
7040, 37, 38, 45, 47letrd 7850 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾 ≤ (𝑣 + 1))
7170, 57jca 302 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐾 ≤ (𝑣 + 1) ∧ (𝑣 + 1) ≤ (𝐽𝐾)))
72 elfz2 9737 . . . . . . . . . . 11 ((𝑣 + 1) ∈ (𝐾...(𝐽𝐾)) ↔ ((𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ (𝑣 + 1) ∈ ℤ) ∧ (𝐾 ≤ (𝑣 + 1) ∧ (𝑣 + 1) ≤ (𝐽𝐾))))
7369, 71, 72sylanbrc 411 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ∈ (𝐾...(𝐽𝐾)))
7473iftrued 3449 . . . . . . . . 9 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → if((𝑣 + 1) ∈ (𝐾...(𝐽𝐾)), if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))), (𝐽‘(𝑣 + 1))) = if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))))
7566, 74eqtrd 2148 . . . . . . . 8 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑄‘(𝑣 + 1)) = if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))))
76 zleltp1 9060 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑣 ∈ ℤ) → (𝐾𝑣𝐾 < (𝑣 + 1)))
7767, 33, 76syl2anc 406 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐾𝑣𝐾 < (𝑣 + 1)))
7845, 77mpbid 146 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾 < (𝑣 + 1))
7940, 78gtned 7840 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ≠ 𝐾)
8079neneqd 2304 . . . . . . . . 9 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ¬ (𝑣 + 1) = 𝐾)
8180iffalsed 3452 . . . . . . . 8 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))) = (𝐽‘((𝑣 + 1) − 1)))
8233zcnd 9125 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ∈ ℂ)
83 pncan1 8103 . . . . . . . . . 10 (𝑣 ∈ ℂ → ((𝑣 + 1) − 1) = 𝑣)
8482, 83syl 14 . . . . . . . . 9 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ((𝑣 + 1) − 1) = 𝑣)
8584fveq2d 5391 . . . . . . . 8 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽‘((𝑣 + 1) − 1)) = (𝐽𝑣))
8675, 81, 853eqtrd 2152 . . . . . . 7 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑄‘(𝑣 + 1)) = (𝐽𝑣))
8786fveq2d 5391 . . . . . 6 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐺‘(𝑄‘(𝑣 + 1))) = (𝐺‘(𝐽𝑣)))
881, 4, 65iseqf1olemqf1o 10206 . . . . . . . 8 (𝜑𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
8988adantr 272 . . . . . . 7 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
90 iseqf1o.7 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
9190adantlr 466 . . . . . . 7 (((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
92 iseqf1olemqsumk.p . . . . . . 7 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
9324, 89, 64, 91, 92iseqf1olemfvp 10210 . . . . . 6 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑄 / 𝑓𝑃‘(𝑣 + 1)) = (𝐺‘(𝑄‘(𝑣 + 1))))
9428, 31, 333jca 1144 . . . . . . . 8 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑣 ∈ ℤ))
9511, 23zsubcld 9129 . . . . . . . . . . . 12 (𝜑 → ((𝐽𝐾) − 1) ∈ ℤ)
9695zred 9124 . . . . . . . . . . 11 (𝜑 → ((𝐽𝐾) − 1) ∈ ℝ)
9796adantr 272 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ((𝐽𝐾) − 1) ∈ ℝ)
9850lem1d 8648 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ((𝐽𝐾) − 1) ≤ (𝐽𝐾))
9997, 50, 51, 98, 60letrd 7850 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ((𝐽𝐾) − 1) ≤ 𝑁)
10037, 97, 51, 53, 99letrd 7850 . . . . . . . . 9 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣𝑁)
10146, 100jca 302 . . . . . . . 8 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑀𝑣𝑣𝑁))
102 elfz2 9737 . . . . . . . 8 (𝑣 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑀𝑣𝑣𝑁)))
10394, 101, 102sylanbrc 411 . . . . . . 7 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ∈ (𝑀...𝑁))
104103, 25, 103, 91, 92iseqf1olemfvp 10210 . . . . . 6 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽 / 𝑓𝑃𝑣) = (𝐺‘(𝐽𝑣)))
10587, 93, 1043eqtr4rd 2159 . . . . 5 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽 / 𝑓𝑃𝑣) = (𝑄 / 𝑓𝑃‘(𝑣 + 1)))
106 simpr 109 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝑥 ∈ (ℤ𝐾))
107 elfzuz 9742 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
1081, 107syl 14 . . . . . . . 8 (𝜑𝐾 ∈ (ℤ𝑀))
109108adantr 272 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
110 uztrn 9291 . . . . . . 7 ((𝑥 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
111106, 109, 110syl2anc 406 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝑥 ∈ (ℤ𝑀))
1121, 4, 65, 90, 92iseqf1olemjpcl 10208 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
113111, 112syldan 278 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
114 simpr 109 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → 𝑥 ∈ (ℤ‘(𝐾 + 1)))
1153adantr 272 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → 𝐾 ∈ ℤ)
116115peano2zd 9127 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → (𝐾 + 1) ∈ ℤ)
117115zred 9124 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → 𝐾 ∈ ℝ)
118117lep1d 8646 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → 𝐾 ≤ (𝐾 + 1))
119 eluz2 9281 . . . . . . . 8 ((𝐾 + 1) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ ∧ 𝐾 ≤ (𝐾 + 1)))
120115, 116, 118, 119syl3anbrc 1148 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → (𝐾 + 1) ∈ (ℤ𝐾))
121 uztrn 9291 . . . . . . 7 ((𝑥 ∈ (ℤ‘(𝐾 + 1)) ∧ (𝐾 + 1) ∈ (ℤ𝐾)) → 𝑥 ∈ (ℤ𝐾))
122114, 120, 121syl2anc 406 . . . . . 6 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → 𝑥 ∈ (ℤ𝐾))
1231, 4, 65, 90, 92iseqf1olemqpcl 10209 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
124111, 123syldan 278 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
125122, 124syldan 278 . . . . 5 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
126 iseqf1o.1 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
12722, 23, 105, 113, 125, 126seq3shft2 10186 . . . 4 (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘((𝐽𝐾) − 1)) = (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(((𝐽𝐾) − 1) + 1)))
12811zcnd 9125 . . . . . 6 (𝜑 → (𝐽𝐾) ∈ ℂ)
129 npcan1 8104 . . . . . 6 ((𝐽𝐾) ∈ ℂ → (((𝐽𝐾) − 1) + 1) = (𝐽𝐾))
130128, 129syl 14 . . . . 5 (𝜑 → (((𝐽𝐾) − 1) + 1) = (𝐽𝐾))
131130fveq2d 5391 . . . 4 (𝜑 → (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(((𝐽𝐾) − 1) + 1)) = (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)))
132127, 131eqtrd 2148 . . 3 (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘((𝐽𝐾) − 1)) = (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)))
133 f1ocnvfv2 5645 . . . . . 6 ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽‘(𝐽𝐾)) = 𝐾)
1344, 1, 133syl2anc 406 . . . . 5 (𝜑 → (𝐽‘(𝐽𝐾)) = 𝐾)
135134fveq2d 5391 . . . 4 (𝜑 → (𝐺‘(𝐽‘(𝐽𝐾))) = (𝐺𝐾))
1361, 4, 9, 90, 92iseqf1olemfvp 10210 . . . 4 (𝜑 → (𝐽 / 𝑓𝑃‘(𝐽𝐾)) = (𝐺‘(𝐽‘(𝐽𝐾))))
1371, 88, 1, 90, 92iseqf1olemfvp 10210 . . . . 5 (𝜑 → (𝑄 / 𝑓𝑃𝐾) = (𝐺‘(𝑄𝐾)))
1381, 4, 1, 65iseqf1olemqval 10200 . . . . . . 7 (𝜑 → (𝑄𝐾) = if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)))
13914, 1, 4, 15iseqf1olemkle 10197 . . . . . . . . . 10 (𝜑𝐾 ≤ (𝐽𝐾))
140 eluz2 9281 . . . . . . . . . 10 ((𝐽𝐾) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ 𝐾 ≤ (𝐽𝐾)))
1413, 11, 139, 140syl3anbrc 1148 . . . . . . . . 9 (𝜑 → (𝐽𝐾) ∈ (ℤ𝐾))
142 eluzfz1 9751 . . . . . . . . 9 ((𝐽𝐾) ∈ (ℤ𝐾) → 𝐾 ∈ (𝐾...(𝐽𝐾)))
143141, 142syl 14 . . . . . . . 8 (𝜑𝐾 ∈ (𝐾...(𝐽𝐾)))
144143iftrued 3449 . . . . . . 7 (𝜑 → if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)) = if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))))
145 eqidd 2116 . . . . . . . 8 (𝜑𝐾 = 𝐾)
146145iftrued 3449 . . . . . . 7 (𝜑 → if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))) = 𝐾)
147138, 144, 1463eqtrd 2152 . . . . . 6 (𝜑 → (𝑄𝐾) = 𝐾)
148147fveq2d 5391 . . . . 5 (𝜑 → (𝐺‘(𝑄𝐾)) = (𝐺𝐾))
149137, 148eqtrd 2148 . . . 4 (𝜑 → (𝑄 / 𝑓𝑃𝐾) = (𝐺𝐾))
150135, 136, 1493eqtr4d 2158 . . 3 (𝜑 → (𝐽 / 𝑓𝑃‘(𝐽𝐾)) = (𝑄 / 𝑓𝑃𝐾))
151132, 150oveq12d 5758 . 2 (𝜑 → ((seq𝐾( + , 𝐽 / 𝑓𝑃)‘((𝐽𝐾) − 1)) + (𝐽 / 𝑓𝑃‘(𝐽𝐾))) = ((seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) + (𝑄 / 𝑓𝑃𝐾)))
1523peano2zd 9127 . . . 4 (𝜑 → (𝐾 + 1) ∈ ℤ)
153 zltp1le 9059 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → (𝐾 < (𝐽𝐾) ↔ (𝐾 + 1) ≤ (𝐽𝐾)))
1543, 11, 153syl2anc 406 . . . . 5 (𝜑 → (𝐾 < (𝐽𝐾) ↔ (𝐾 + 1) ≤ (𝐽𝐾)))
15517, 154mpbid 146 . . . 4 (𝜑 → (𝐾 + 1) ≤ (𝐽𝐾))
156 eluz2 9281 . . . 4 ((𝐽𝐾) ∈ (ℤ‘(𝐾 + 1)) ↔ ((𝐾 + 1) ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ (𝐾 + 1) ≤ (𝐽𝐾)))
157152, 11, 155, 156syl3anbrc 1148 . . 3 (𝜑 → (𝐽𝐾) ∈ (ℤ‘(𝐾 + 1)))
1583, 157, 113, 126seq3m1 10181 . 2 (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘(𝐽𝐾)) = ((seq𝐾( + , 𝐽 / 𝑓𝑃)‘((𝐽𝐾) − 1)) + (𝐽 / 𝑓𝑃‘(𝐽𝐾))))
159 iseqf1o.3 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
160126, 159, 157, 3, 124seq3-1p 10193 . . 3 (𝜑 → (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) = ((𝑄 / 𝑓𝑃𝐾) + (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾))))
161 iseqf1o.2 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
162 fveq2 5387 . . . . . . 7 (𝑥 = (𝑄𝐾) → (𝐺𝑥) = (𝐺‘(𝑄𝐾)))
163162eleq1d 2184 . . . . . 6 (𝑥 = (𝑄𝐾) → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺‘(𝑄𝐾)) ∈ 𝑆))
16490ralrimiva 2480 . . . . . 6 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
165147, 108eqeltrd 2192 . . . . . 6 (𝜑 → (𝑄𝐾) ∈ (ℤ𝑀))
166163, 164, 165rspcdva 2766 . . . . 5 (𝜑 → (𝐺‘(𝑄𝐾)) ∈ 𝑆)
167137, 166eqeltrd 2192 . . . 4 (𝜑 → (𝑄 / 𝑓𝑃𝐾) ∈ 𝑆)
168 eqid 2115 . . . . . 6 (ℤ‘(𝐾 + 1)) = (ℤ‘(𝐾 + 1))
169168, 152, 125, 126seqf 10174 . . . . 5 (𝜑 → seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃):(ℤ‘(𝐾 + 1))⟶𝑆)
170169, 157ffvelrnd 5522 . . . 4 (𝜑 → (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) ∈ 𝑆)
171161, 167, 170caovcomd 5893 . . 3 (𝜑 → ((𝑄 / 𝑓𝑃𝐾) + (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾))) = ((seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) + (𝑄 / 𝑓𝑃𝐾)))
172160, 171eqtrd 2148 . 2 (𝜑 → (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) = ((seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) + (𝑄 / 𝑓𝑃𝐾)))
173151, 158, 1723eqtr4d 2158 1 (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘(𝐽𝐾)) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 945   = wceq 1314  wcel 1463  wne 2283  wral 2391  csb 2973  ifcif 3442   class class class wbr 3897  cmpt 3957  ccnv 4506  wf 5087  1-1-ontowf1o 5090  cfv 5091  (class class class)co 5740  cc 7582  cr 7583  1c1 7585   + caddc 7587   < clt 7764  cle 7765  cmin 7897  cz 9005  cuz 9275  ...cfz 9730  ..^cfzo 9859  seqcseq 10158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-1o 6279  df-er 6395  df-en 6601  df-fin 6603  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-inn 8678  df-n0 8929  df-z 9006  df-uz 9276  df-fz 9731  df-fzo 9860  df-seqfrec 10159
This theorem is referenced by:  seq3f1olemqsumk  10212
  Copyright terms: Public domain W3C validator