Step | Hyp | Ref
| Expression |
1 | | iseqf1olemstep.k |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
2 | | elfzelz 9910 |
. . . . . . 7
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
3 | 1, 2 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℤ) |
4 | | iseqf1olemstep.j |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
5 | | f1ocnv 5424 |
. . . . . . . . . . 11
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
6 | 4, 5 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
7 | | f1of 5411 |
. . . . . . . . . 10
⊢ (◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
8 | 6, 7 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
9 | 8, 1 | ffvelrnd 5600 |
. . . . . . . 8
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (𝑀...𝑁)) |
10 | | elfzelz 9910 |
. . . . . . . 8
⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ ℤ) |
11 | 9, 10 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ ℤ) |
12 | | peano2zm 9188 |
. . . . . . 7
⊢ ((◡𝐽‘𝐾) ∈ ℤ → ((◡𝐽‘𝐾) − 1) ∈
ℤ) |
13 | 11, 12 | syl 14 |
. . . . . 6
⊢ (𝜑 → ((◡𝐽‘𝐾) − 1) ∈
ℤ) |
14 | | iseqf1o.4 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
15 | | iseqf1olemstep.const |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) |
16 | | iseqf1olemnk |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) |
17 | 14, 1, 4, 15, 16 | iseqf1olemklt 10366 |
. . . . . . 7
⊢ (𝜑 → 𝐾 < (◡𝐽‘𝐾)) |
18 | | zltlem1 9207 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ) → (𝐾 < (◡𝐽‘𝐾) ↔ 𝐾 ≤ ((◡𝐽‘𝐾) − 1))) |
19 | 3, 11, 18 | syl2anc 409 |
. . . . . . 7
⊢ (𝜑 → (𝐾 < (◡𝐽‘𝐾) ↔ 𝐾 ≤ ((◡𝐽‘𝐾) − 1))) |
20 | 17, 19 | mpbid 146 |
. . . . . 6
⊢ (𝜑 → 𝐾 ≤ ((◡𝐽‘𝐾) − 1)) |
21 | | eluz2 9428 |
. . . . . 6
⊢ (((◡𝐽‘𝐾) − 1) ∈
(ℤ≥‘𝐾) ↔ (𝐾 ∈ ℤ ∧ ((◡𝐽‘𝐾) − 1) ∈ ℤ ∧ 𝐾 ≤ ((◡𝐽‘𝐾) − 1))) |
22 | 3, 13, 20, 21 | syl3anbrc 1166 |
. . . . 5
⊢ (𝜑 → ((◡𝐽‘𝐾) − 1) ∈
(ℤ≥‘𝐾)) |
23 | | 1zzd 9177 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) |
24 | 1 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝐾 ∈ (𝑀...𝑁)) |
25 | 4 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
26 | | elfzel1 9909 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
27 | 1, 26 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℤ) |
28 | 27 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝑀 ∈ ℤ) |
29 | | elfzel2 9908 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
30 | 1, 29 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℤ) |
31 | 30 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝑁 ∈ ℤ) |
32 | | elfzelz 9910 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1)) → 𝑣 ∈ ℤ) |
33 | 32 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝑣 ∈ ℤ) |
34 | 33 | peano2zd 9272 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝑣 + 1) ∈ ℤ) |
35 | 28, 31, 34 | 3jca 1162 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑣 + 1) ∈ ℤ)) |
36 | 28 | zred 9269 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝑀 ∈ ℝ) |
37 | 33 | zred 9269 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝑣 ∈ ℝ) |
38 | 34 | zred 9269 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝑣 + 1) ∈ ℝ) |
39 | 3 | zred 9269 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ ℝ) |
40 | 39 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝐾 ∈ ℝ) |
41 | | elfzle1 9911 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) |
42 | 1, 41 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ≤ 𝐾) |
43 | 42 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝑀 ≤ 𝐾) |
44 | | elfzle1 9911 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1)) → 𝐾 ≤ 𝑣) |
45 | 44 | adantl 275 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝐾 ≤ 𝑣) |
46 | 36, 40, 37, 43, 45 | letrd 7982 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝑀 ≤ 𝑣) |
47 | 37 | lep1d 8785 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝑣 ≤ (𝑣 + 1)) |
48 | 36, 37, 38, 46, 47 | letrd 7982 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝑀 ≤ (𝑣 + 1)) |
49 | 11 | zred 9269 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ ℝ) |
50 | 49 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (◡𝐽‘𝐾) ∈ ℝ) |
51 | 31 | zred 9269 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝑁 ∈ ℝ) |
52 | | elfzle2 9912 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1)) → 𝑣 ≤ ((◡𝐽‘𝐾) − 1)) |
53 | 52 | adantl 275 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝑣 ≤ ((◡𝐽‘𝐾) − 1)) |
54 | | 1red 7876 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 1 ∈
ℝ) |
55 | | leaddsub 8296 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 ∈ ℝ ∧ 1 ∈
ℝ ∧ (◡𝐽‘𝐾) ∈ ℝ) → ((𝑣 + 1) ≤ (◡𝐽‘𝐾) ↔ 𝑣 ≤ ((◡𝐽‘𝐾) − 1))) |
56 | 37, 54, 50, 55 | syl3anc 1220 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → ((𝑣 + 1) ≤ (◡𝐽‘𝐾) ↔ 𝑣 ≤ ((◡𝐽‘𝐾) − 1))) |
57 | 53, 56 | mpbird 166 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝑣 + 1) ≤ (◡𝐽‘𝐾)) |
58 | | elfzle2 9912 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ≤ 𝑁) |
59 | 9, 58 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (◡𝐽‘𝐾) ≤ 𝑁) |
60 | 59 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (◡𝐽‘𝐾) ≤ 𝑁) |
61 | 38, 50, 51, 57, 60 | letrd 7982 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝑣 + 1) ≤ 𝑁) |
62 | 48, 61 | jca 304 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝑀 ≤ (𝑣 + 1) ∧ (𝑣 + 1) ≤ 𝑁)) |
63 | | elfz2 9901 |
. . . . . . . . . . 11
⊢ ((𝑣 + 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑣 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑣 + 1) ∧ (𝑣 + 1) ≤ 𝑁))) |
64 | 35, 62, 63 | sylanbrc 414 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝑣 + 1) ∈ (𝑀...𝑁)) |
65 | | iseqf1olemqres.q |
. . . . . . . . . 10
⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
66 | 24, 25, 64, 65 | iseqf1olemqval 10368 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝑄‘(𝑣 + 1)) = if((𝑣 + 1) ∈ (𝐾...(◡𝐽‘𝐾)), if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))), (𝐽‘(𝑣 + 1)))) |
67 | 24, 2 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝐾 ∈ ℤ) |
68 | 11 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (◡𝐽‘𝐾) ∈ ℤ) |
69 | 67, 68, 34 | 3jca 1162 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ ∧ (𝑣 + 1) ∈ ℤ)) |
70 | 40, 37, 38, 45, 47 | letrd 7982 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝐾 ≤ (𝑣 + 1)) |
71 | 70, 57 | jca 304 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝐾 ≤ (𝑣 + 1) ∧ (𝑣 + 1) ≤ (◡𝐽‘𝐾))) |
72 | | elfz2 9901 |
. . . . . . . . . . 11
⊢ ((𝑣 + 1) ∈ (𝐾...(◡𝐽‘𝐾)) ↔ ((𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ ∧ (𝑣 + 1) ∈ ℤ) ∧ (𝐾 ≤ (𝑣 + 1) ∧ (𝑣 + 1) ≤ (◡𝐽‘𝐾)))) |
73 | 69, 71, 72 | sylanbrc 414 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝑣 + 1) ∈ (𝐾...(◡𝐽‘𝐾))) |
74 | 73 | iftrued 3512 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → if((𝑣 + 1) ∈ (𝐾...(◡𝐽‘𝐾)), if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))), (𝐽‘(𝑣 + 1))) = if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1)))) |
75 | 66, 74 | eqtrd 2190 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝑄‘(𝑣 + 1)) = if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1)))) |
76 | | zleltp1 9205 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℤ ∧ 𝑣 ∈ ℤ) → (𝐾 ≤ 𝑣 ↔ 𝐾 < (𝑣 + 1))) |
77 | 67, 33, 76 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝐾 ≤ 𝑣 ↔ 𝐾 < (𝑣 + 1))) |
78 | 45, 77 | mpbid 146 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝐾 < (𝑣 + 1)) |
79 | 40, 78 | gtned 7972 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝑣 + 1) ≠ 𝐾) |
80 | 79 | neneqd 2348 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → ¬ (𝑣 + 1) = 𝐾) |
81 | 80 | iffalsed 3515 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))) = (𝐽‘((𝑣 + 1) − 1))) |
82 | 33 | zcnd 9270 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝑣 ∈ ℂ) |
83 | | pncan1 8235 |
. . . . . . . . . 10
⊢ (𝑣 ∈ ℂ → ((𝑣 + 1) − 1) = 𝑣) |
84 | 82, 83 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → ((𝑣 + 1) − 1) = 𝑣) |
85 | 84 | fveq2d 5469 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝐽‘((𝑣 + 1) − 1)) = (𝐽‘𝑣)) |
86 | 75, 81, 85 | 3eqtrd 2194 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝑄‘(𝑣 + 1)) = (𝐽‘𝑣)) |
87 | 86 | fveq2d 5469 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝐺‘(𝑄‘(𝑣 + 1))) = (𝐺‘(𝐽‘𝑣))) |
88 | 1, 4, 65 | iseqf1olemqf1o 10374 |
. . . . . . . 8
⊢ (𝜑 → 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
89 | 88 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
90 | | iseqf1o.7 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
91 | 90 | adantlr 469 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
92 | | iseqf1olemqsumk.p |
. . . . . . 7
⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
93 | 24, 89, 64, 91, 92 | iseqf1olemfvp 10378 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (⦋𝑄 / 𝑓⦌𝑃‘(𝑣 + 1)) = (𝐺‘(𝑄‘(𝑣 + 1)))) |
94 | 28, 31, 33 | 3jca 1162 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑣 ∈ ℤ)) |
95 | 11, 23 | zsubcld 9274 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((◡𝐽‘𝐾) − 1) ∈
ℤ) |
96 | 95 | zred 9269 |
. . . . . . . . . . 11
⊢ (𝜑 → ((◡𝐽‘𝐾) − 1) ∈
ℝ) |
97 | 96 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → ((◡𝐽‘𝐾) − 1) ∈
ℝ) |
98 | 50 | lem1d 8787 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → ((◡𝐽‘𝐾) − 1) ≤ (◡𝐽‘𝐾)) |
99 | 97, 50, 51, 98, 60 | letrd 7982 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → ((◡𝐽‘𝐾) − 1) ≤ 𝑁) |
100 | 37, 97, 51, 53, 99 | letrd 7982 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝑣 ≤ 𝑁) |
101 | 46, 100 | jca 304 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (𝑀 ≤ 𝑣 ∧ 𝑣 ≤ 𝑁)) |
102 | | elfz2 9901 |
. . . . . . . 8
⊢ (𝑣 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑀 ≤ 𝑣 ∧ 𝑣 ≤ 𝑁))) |
103 | 94, 101, 102 | sylanbrc 414 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → 𝑣 ∈ (𝑀...𝑁)) |
104 | 103, 25, 103, 91, 92 | iseqf1olemfvp 10378 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (⦋𝐽 / 𝑓⦌𝑃‘𝑣) = (𝐺‘(𝐽‘𝑣))) |
105 | 87, 93, 104 | 3eqtr4rd 2201 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐾...((◡𝐽‘𝐾) − 1))) → (⦋𝐽 / 𝑓⦌𝑃‘𝑣) = (⦋𝑄 / 𝑓⦌𝑃‘(𝑣 + 1))) |
106 | | simpr 109 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → 𝑥 ∈ (ℤ≥‘𝐾)) |
107 | | elfzuz 9906 |
. . . . . . . . 9
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
108 | 1, 107 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
109 | 108 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
110 | | uztrn 9438 |
. . . . . . 7
⊢ ((𝑥 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
111 | 106, 109,
110 | syl2anc 409 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
112 | 1, 4, 65, 90, 92 | iseqf1olemjpcl 10376 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝐽 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |
113 | 111, 112 | syldan 280 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (⦋𝐽 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |
114 | | simpr 109 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝐾 + 1))) → 𝑥 ∈
(ℤ≥‘(𝐾 + 1))) |
115 | 3 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝐾 + 1))) → 𝐾 ∈ ℤ) |
116 | 115 | peano2zd 9272 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐾 + 1) ∈
ℤ) |
117 | 115 | zred 9269 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝐾 + 1))) → 𝐾 ∈ ℝ) |
118 | 117 | lep1d 8785 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝐾 + 1))) → 𝐾 ≤ (𝐾 + 1)) |
119 | | eluz2 9428 |
. . . . . . . 8
⊢ ((𝐾 + 1) ∈
(ℤ≥‘𝐾) ↔ (𝐾 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ ∧ 𝐾 ≤ (𝐾 + 1))) |
120 | 115, 116,
118, 119 | syl3anbrc 1166 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐾 + 1) ∈
(ℤ≥‘𝐾)) |
121 | | uztrn 9438 |
. . . . . . 7
⊢ ((𝑥 ∈
(ℤ≥‘(𝐾 + 1)) ∧ (𝐾 + 1) ∈
(ℤ≥‘𝐾)) → 𝑥 ∈ (ℤ≥‘𝐾)) |
122 | 114, 120,
121 | syl2anc 409 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝐾 + 1))) → 𝑥 ∈
(ℤ≥‘𝐾)) |
123 | 1, 4, 65, 90, 92 | iseqf1olemqpcl 10377 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝑄 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |
124 | 111, 123 | syldan 280 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (⦋𝑄 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |
125 | 122, 124 | syldan 280 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝐾 + 1))) →
(⦋𝑄 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |
126 | | iseqf1o.1 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
127 | 22, 23, 105, 113, 125, 126 | seq3shft2 10354 |
. . . 4
⊢ (𝜑 → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘((◡𝐽‘𝐾) − 1)) = (seq(𝐾 + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘(((◡𝐽‘𝐾) − 1) + 1))) |
128 | 11 | zcnd 9270 |
. . . . . 6
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ ℂ) |
129 | | npcan1 8236 |
. . . . . 6
⊢ ((◡𝐽‘𝐾) ∈ ℂ → (((◡𝐽‘𝐾) − 1) + 1) = (◡𝐽‘𝐾)) |
130 | 128, 129 | syl 14 |
. . . . 5
⊢ (𝜑 → (((◡𝐽‘𝐾) − 1) + 1) = (◡𝐽‘𝐾)) |
131 | 130 | fveq2d 5469 |
. . . 4
⊢ (𝜑 → (seq(𝐾 + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘(((◡𝐽‘𝐾) − 1) + 1)) = (seq(𝐾 + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾))) |
132 | 127, 131 | eqtrd 2190 |
. . 3
⊢ (𝜑 → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘((◡𝐽‘𝐾) − 1)) = (seq(𝐾 + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾))) |
133 | | f1ocnvfv2 5723 |
. . . . . 6
⊢ ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽‘(◡𝐽‘𝐾)) = 𝐾) |
134 | 4, 1, 133 | syl2anc 409 |
. . . . 5
⊢ (𝜑 → (𝐽‘(◡𝐽‘𝐾)) = 𝐾) |
135 | 134 | fveq2d 5469 |
. . . 4
⊢ (𝜑 → (𝐺‘(𝐽‘(◡𝐽‘𝐾))) = (𝐺‘𝐾)) |
136 | 1, 4, 9, 90, 92 | iseqf1olemfvp 10378 |
. . . 4
⊢ (𝜑 → (⦋𝐽 / 𝑓⦌𝑃‘(◡𝐽‘𝐾)) = (𝐺‘(𝐽‘(◡𝐽‘𝐾)))) |
137 | 1, 88, 1, 90, 92 | iseqf1olemfvp 10378 |
. . . . 5
⊢ (𝜑 → (⦋𝑄 / 𝑓⦌𝑃‘𝐾) = (𝐺‘(𝑄‘𝐾))) |
138 | 1, 4, 1, 65 | iseqf1olemqval 10368 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝐾) = if(𝐾 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽‘𝐾))) |
139 | 14, 1, 4, 15 | iseqf1olemkle 10365 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ≤ (◡𝐽‘𝐾)) |
140 | | eluz2 9428 |
. . . . . . . . . 10
⊢ ((◡𝐽‘𝐾) ∈ (ℤ≥‘𝐾) ↔ (𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ ∧ 𝐾 ≤ (◡𝐽‘𝐾))) |
141 | 3, 11, 139, 140 | syl3anbrc 1166 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (ℤ≥‘𝐾)) |
142 | | eluzfz1 9915 |
. . . . . . . . 9
⊢ ((◡𝐽‘𝐾) ∈ (ℤ≥‘𝐾) → 𝐾 ∈ (𝐾...(◡𝐽‘𝐾))) |
143 | 141, 142 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (𝐾...(◡𝐽‘𝐾))) |
144 | 143 | iftrued 3512 |
. . . . . . 7
⊢ (𝜑 → if(𝐾 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽‘𝐾)) = if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1)))) |
145 | | eqidd 2158 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 = 𝐾) |
146 | 145 | iftrued 3512 |
. . . . . . 7
⊢ (𝜑 → if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))) = 𝐾) |
147 | 138, 144,
146 | 3eqtrd 2194 |
. . . . . 6
⊢ (𝜑 → (𝑄‘𝐾) = 𝐾) |
148 | 147 | fveq2d 5469 |
. . . . 5
⊢ (𝜑 → (𝐺‘(𝑄‘𝐾)) = (𝐺‘𝐾)) |
149 | 137, 148 | eqtrd 2190 |
. . . 4
⊢ (𝜑 → (⦋𝑄 / 𝑓⦌𝑃‘𝐾) = (𝐺‘𝐾)) |
150 | 135, 136,
149 | 3eqtr4d 2200 |
. . 3
⊢ (𝜑 → (⦋𝐽 / 𝑓⦌𝑃‘(◡𝐽‘𝐾)) = (⦋𝑄 / 𝑓⦌𝑃‘𝐾)) |
151 | 132, 150 | oveq12d 5836 |
. 2
⊢ (𝜑 → ((seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘((◡𝐽‘𝐾) − 1)) + (⦋𝐽 / 𝑓⦌𝑃‘(◡𝐽‘𝐾))) = ((seq(𝐾 + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) + (⦋𝑄 / 𝑓⦌𝑃‘𝐾))) |
152 | 3 | peano2zd 9272 |
. . . 4
⊢ (𝜑 → (𝐾 + 1) ∈ ℤ) |
153 | | zltp1le 9204 |
. . . . . 6
⊢ ((𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ) → (𝐾 < (◡𝐽‘𝐾) ↔ (𝐾 + 1) ≤ (◡𝐽‘𝐾))) |
154 | 3, 11, 153 | syl2anc 409 |
. . . . 5
⊢ (𝜑 → (𝐾 < (◡𝐽‘𝐾) ↔ (𝐾 + 1) ≤ (◡𝐽‘𝐾))) |
155 | 17, 154 | mpbid 146 |
. . . 4
⊢ (𝜑 → (𝐾 + 1) ≤ (◡𝐽‘𝐾)) |
156 | | eluz2 9428 |
. . . 4
⊢ ((◡𝐽‘𝐾) ∈
(ℤ≥‘(𝐾 + 1)) ↔ ((𝐾 + 1) ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ ∧ (𝐾 + 1) ≤ (◡𝐽‘𝐾))) |
157 | 152, 11, 155, 156 | syl3anbrc 1166 |
. . 3
⊢ (𝜑 → (◡𝐽‘𝐾) ∈
(ℤ≥‘(𝐾 + 1))) |
158 | 3, 157, 113, 126 | seq3m1 10349 |
. 2
⊢ (𝜑 → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) = ((seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘((◡𝐽‘𝐾) − 1)) + (⦋𝐽 / 𝑓⦌𝑃‘(◡𝐽‘𝐾)))) |
159 | | iseqf1o.3 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
160 | 126, 159,
157, 3, 124 | seq3-1p 10361 |
. . 3
⊢ (𝜑 → (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) = ((⦋𝑄 / 𝑓⦌𝑃‘𝐾) + (seq(𝐾 + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)))) |
161 | | iseqf1o.2 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
162 | | fveq2 5465 |
. . . . . . 7
⊢ (𝑥 = (𝑄‘𝐾) → (𝐺‘𝑥) = (𝐺‘(𝑄‘𝐾))) |
163 | 162 | eleq1d 2226 |
. . . . . 6
⊢ (𝑥 = (𝑄‘𝐾) → ((𝐺‘𝑥) ∈ 𝑆 ↔ (𝐺‘(𝑄‘𝐾)) ∈ 𝑆)) |
164 | 90 | ralrimiva 2530 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆) |
165 | 147, 108 | eqeltrd 2234 |
. . . . . 6
⊢ (𝜑 → (𝑄‘𝐾) ∈ (ℤ≥‘𝑀)) |
166 | 163, 164,
165 | rspcdva 2821 |
. . . . 5
⊢ (𝜑 → (𝐺‘(𝑄‘𝐾)) ∈ 𝑆) |
167 | 137, 166 | eqeltrd 2234 |
. . . 4
⊢ (𝜑 → (⦋𝑄 / 𝑓⦌𝑃‘𝐾) ∈ 𝑆) |
168 | | eqid 2157 |
. . . . . 6
⊢
(ℤ≥‘(𝐾 + 1)) =
(ℤ≥‘(𝐾 + 1)) |
169 | 168, 152,
125, 126 | seqf 10342 |
. . . . 5
⊢ (𝜑 → seq(𝐾 + 1)( + , ⦋𝑄 / 𝑓⦌𝑃):(ℤ≥‘(𝐾 + 1))⟶𝑆) |
170 | 169, 157 | ffvelrnd 5600 |
. . . 4
⊢ (𝜑 → (seq(𝐾 + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) ∈ 𝑆) |
171 | 161, 167,
170 | caovcomd 5971 |
. . 3
⊢ (𝜑 → ((⦋𝑄 / 𝑓⦌𝑃‘𝐾) + (seq(𝐾 + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾))) = ((seq(𝐾 + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) + (⦋𝑄 / 𝑓⦌𝑃‘𝐾))) |
172 | 160, 171 | eqtrd 2190 |
. 2
⊢ (𝜑 → (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) = ((seq(𝐾 + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) + (⦋𝑄 / 𝑓⦌𝑃‘𝐾))) |
173 | 151, 158,
172 | 3eqtr4d 2200 |
1
⊢ (𝜑 → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾))) |