ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1olemqsumkj GIF version

Theorem seq3f1olemqsumkj 9927
Description: Lemma for seq3f1o 9933. 𝑄 gives the same sum as 𝐽 in the range (𝐾...(𝐽𝐾)). (Contributed by Jim Kingdon, 29-Aug-2022.)
Hypotheses
Ref Expression
iseqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqf1o.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
iseqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
iseqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1o.6 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1o.7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1olemstep.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemstep.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemstep.const (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
iseqf1olemnk (𝜑𝐾 ≠ (𝐽𝐾))
iseqf1olemqres.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemqsumk.p 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
seq3f1olemqsumkj (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘(𝐽𝐾)) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)))
Distinct variable groups:   𝑢,𝐽   𝑢,𝐾,𝑥   𝑢,𝑀,𝑥   𝑢,𝑁   𝑥,𝐽   𝑥,𝑄   𝜑,𝑥   𝑥, + ,𝑦,𝑧   𝑓,𝐺,𝑥   𝑓,𝐽,𝑦,𝑧   𝑦,𝐾,𝑧   𝑓,𝑀   𝑓,𝑁,𝑥   𝑥,𝑃,𝑦,𝑧   𝑄,𝑓,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑢   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝑃(𝑢,𝑓)   + (𝑢,𝑓)   𝑄(𝑢)   𝑆(𝑢,𝑓)   𝐹(𝑥,𝑦,𝑧,𝑢,𝑓)   𝐺(𝑦,𝑧,𝑢)   𝐾(𝑓)   𝑀(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem seq3f1olemqsumkj
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 iseqf1olemstep.k . . . . . . 7 (𝜑𝐾 ∈ (𝑀...𝑁))
2 elfzelz 9440 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
31, 2syl 14 . . . . . 6 (𝜑𝐾 ∈ ℤ)
4 iseqf1olemstep.j . . . . . . . . . . 11 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
5 f1ocnv 5266 . . . . . . . . . . 11 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
64, 5syl 14 . . . . . . . . . 10 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
7 f1of 5253 . . . . . . . . . 10 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
86, 7syl 14 . . . . . . . . 9 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
98, 1ffvelrnd 5435 . . . . . . . 8 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
10 elfzelz 9440 . . . . . . . 8 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
119, 10syl 14 . . . . . . 7 (𝜑 → (𝐽𝐾) ∈ ℤ)
12 peano2zm 8788 . . . . . . 7 ((𝐽𝐾) ∈ ℤ → ((𝐽𝐾) − 1) ∈ ℤ)
1311, 12syl 14 . . . . . 6 (𝜑 → ((𝐽𝐾) − 1) ∈ ℤ)
14 iseqf1o.4 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
15 iseqf1olemstep.const . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
16 iseqf1olemnk . . . . . . . 8 (𝜑𝐾 ≠ (𝐽𝐾))
1714, 1, 4, 15, 16iseqf1olemklt 9914 . . . . . . 7 (𝜑𝐾 < (𝐽𝐾))
18 zltlem1 8807 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → (𝐾 < (𝐽𝐾) ↔ 𝐾 ≤ ((𝐽𝐾) − 1)))
193, 11, 18syl2anc 403 . . . . . . 7 (𝜑 → (𝐾 < (𝐽𝐾) ↔ 𝐾 ≤ ((𝐽𝐾) − 1)))
2017, 19mpbid 145 . . . . . 6 (𝜑𝐾 ≤ ((𝐽𝐾) − 1))
21 eluz2 9025 . . . . . 6 (((𝐽𝐾) − 1) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ ((𝐽𝐾) − 1) ∈ ℤ ∧ 𝐾 ≤ ((𝐽𝐾) − 1)))
223, 13, 20, 21syl3anbrc 1127 . . . . 5 (𝜑 → ((𝐽𝐾) − 1) ∈ (ℤ𝐾))
23 1zzd 8777 . . . . 5 (𝜑 → 1 ∈ ℤ)
241adantr 270 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾 ∈ (𝑀...𝑁))
254adantr 270 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
26 elfzel1 9439 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
271, 26syl 14 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
2827adantr 270 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑀 ∈ ℤ)
29 elfzel2 9438 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
301, 29syl 14 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
3130adantr 270 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑁 ∈ ℤ)
32 elfzelz 9440 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝐾...((𝐽𝐾) − 1)) → 𝑣 ∈ ℤ)
3332adantl 271 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ∈ ℤ)
3433peano2zd 8871 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ∈ ℤ)
3528, 31, 343jca 1123 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑣 + 1) ∈ ℤ))
3628zred 8868 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑀 ∈ ℝ)
3733zred 8868 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ∈ ℝ)
3834zred 8868 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ∈ ℝ)
393zred 8868 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ ℝ)
4039adantr 270 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾 ∈ ℝ)
41 elfzle1 9441 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)
421, 41syl 14 . . . . . . . . . . . . . . 15 (𝜑𝑀𝐾)
4342adantr 270 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑀𝐾)
44 elfzle1 9441 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐾...((𝐽𝐾) − 1)) → 𝐾𝑣)
4544adantl 271 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾𝑣)
4636, 40, 37, 43, 45letrd 7607 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑀𝑣)
4737lep1d 8392 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ≤ (𝑣 + 1))
4836, 37, 38, 46, 47letrd 7607 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑀 ≤ (𝑣 + 1))
4911zred 8868 . . . . . . . . . . . . . 14 (𝜑 → (𝐽𝐾) ∈ ℝ)
5049adantr 270 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽𝐾) ∈ ℝ)
5131zred 8868 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑁 ∈ ℝ)
52 elfzle2 9442 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐾...((𝐽𝐾) − 1)) → 𝑣 ≤ ((𝐽𝐾) − 1))
5352adantl 271 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ≤ ((𝐽𝐾) − 1))
54 1red 7503 . . . . . . . . . . . . . . 15 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 1 ∈ ℝ)
55 leaddsub 7916 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐽𝐾) ∈ ℝ) → ((𝑣 + 1) ≤ (𝐽𝐾) ↔ 𝑣 ≤ ((𝐽𝐾) − 1)))
5637, 54, 50, 55syl3anc 1174 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ((𝑣 + 1) ≤ (𝐽𝐾) ↔ 𝑣 ≤ ((𝐽𝐾) − 1)))
5753, 56mpbird 165 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ≤ (𝐽𝐾))
58 elfzle2 9442 . . . . . . . . . . . . . . 15 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ≤ 𝑁)
599, 58syl 14 . . . . . . . . . . . . . 14 (𝜑 → (𝐽𝐾) ≤ 𝑁)
6059adantr 270 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽𝐾) ≤ 𝑁)
6138, 50, 51, 57, 60letrd 7607 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ≤ 𝑁)
6248, 61jca 300 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑀 ≤ (𝑣 + 1) ∧ (𝑣 + 1) ≤ 𝑁))
63 elfz2 9431 . . . . . . . . . . 11 ((𝑣 + 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑣 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑣 + 1) ∧ (𝑣 + 1) ≤ 𝑁)))
6435, 62, 63sylanbrc 408 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ∈ (𝑀...𝑁))
65 iseqf1olemqres.q . . . . . . . . . 10 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
6624, 25, 64, 65iseqf1olemqval 9916 . . . . . . . . 9 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑄‘(𝑣 + 1)) = if((𝑣 + 1) ∈ (𝐾...(𝐽𝐾)), if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))), (𝐽‘(𝑣 + 1))))
6724, 2syl 14 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾 ∈ ℤ)
6811adantr 270 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽𝐾) ∈ ℤ)
6967, 68, 343jca 1123 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ (𝑣 + 1) ∈ ℤ))
7040, 37, 38, 45, 47letrd 7607 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾 ≤ (𝑣 + 1))
7170, 57jca 300 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐾 ≤ (𝑣 + 1) ∧ (𝑣 + 1) ≤ (𝐽𝐾)))
72 elfz2 9431 . . . . . . . . . . 11 ((𝑣 + 1) ∈ (𝐾...(𝐽𝐾)) ↔ ((𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ (𝑣 + 1) ∈ ℤ) ∧ (𝐾 ≤ (𝑣 + 1) ∧ (𝑣 + 1) ≤ (𝐽𝐾))))
7369, 71, 72sylanbrc 408 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ∈ (𝐾...(𝐽𝐾)))
7473iftrued 3400 . . . . . . . . 9 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → if((𝑣 + 1) ∈ (𝐾...(𝐽𝐾)), if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))), (𝐽‘(𝑣 + 1))) = if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))))
7566, 74eqtrd 2120 . . . . . . . 8 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑄‘(𝑣 + 1)) = if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))))
76 zleltp1 8805 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑣 ∈ ℤ) → (𝐾𝑣𝐾 < (𝑣 + 1)))
7767, 33, 76syl2anc 403 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐾𝑣𝐾 < (𝑣 + 1)))
7845, 77mpbid 145 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝐾 < (𝑣 + 1))
7940, 78gtned 7597 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑣 + 1) ≠ 𝐾)
8079neneqd 2276 . . . . . . . . 9 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ¬ (𝑣 + 1) = 𝐾)
8180iffalsed 3403 . . . . . . . 8 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → if((𝑣 + 1) = 𝐾, 𝐾, (𝐽‘((𝑣 + 1) − 1))) = (𝐽‘((𝑣 + 1) − 1)))
8233zcnd 8869 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ∈ ℂ)
83 pncan1 7855 . . . . . . . . . 10 (𝑣 ∈ ℂ → ((𝑣 + 1) − 1) = 𝑣)
8482, 83syl 14 . . . . . . . . 9 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ((𝑣 + 1) − 1) = 𝑣)
8584fveq2d 5309 . . . . . . . 8 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽‘((𝑣 + 1) − 1)) = (𝐽𝑣))
8675, 81, 853eqtrd 2124 . . . . . . 7 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑄‘(𝑣 + 1)) = (𝐽𝑣))
8786fveq2d 5309 . . . . . 6 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐺‘(𝑄‘(𝑣 + 1))) = (𝐺‘(𝐽𝑣)))
881, 4, 65iseqf1olemqf1o 9922 . . . . . . . 8 (𝜑𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
8988adantr 270 . . . . . . 7 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
90 iseqf1o.7 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
9190adantlr 461 . . . . . . 7 (((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
92 iseqf1olemqsumk.p . . . . . . 7 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
9324, 89, 64, 91, 92iseqf1olemfvp 9926 . . . . . 6 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑄 / 𝑓𝑃‘(𝑣 + 1)) = (𝐺‘(𝑄‘(𝑣 + 1))))
9428, 31, 333jca 1123 . . . . . . . 8 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑣 ∈ ℤ))
9511, 23zsubcld 8873 . . . . . . . . . . . 12 (𝜑 → ((𝐽𝐾) − 1) ∈ ℤ)
9695zred 8868 . . . . . . . . . . 11 (𝜑 → ((𝐽𝐾) − 1) ∈ ℝ)
9796adantr 270 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ((𝐽𝐾) − 1) ∈ ℝ)
9850lem1d 8394 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ((𝐽𝐾) − 1) ≤ (𝐽𝐾))
9997, 50, 51, 98, 60letrd 7607 . . . . . . . . . 10 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → ((𝐽𝐾) − 1) ≤ 𝑁)
10037, 97, 51, 53, 99letrd 7607 . . . . . . . . 9 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣𝑁)
10146, 100jca 300 . . . . . . . 8 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝑀𝑣𝑣𝑁))
102 elfz2 9431 . . . . . . . 8 (𝑣 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑀𝑣𝑣𝑁)))
10394, 101, 102sylanbrc 408 . . . . . . 7 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → 𝑣 ∈ (𝑀...𝑁))
104103, 25, 103, 91, 92iseqf1olemfvp 9926 . . . . . 6 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽 / 𝑓𝑃𝑣) = (𝐺‘(𝐽𝑣)))
10587, 93, 1043eqtr4rd 2131 . . . . 5 ((𝜑𝑣 ∈ (𝐾...((𝐽𝐾) − 1))) → (𝐽 / 𝑓𝑃𝑣) = (𝑄 / 𝑓𝑃‘(𝑣 + 1)))
106 simpr 108 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝑥 ∈ (ℤ𝐾))
107 elfzuz 9436 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
1081, 107syl 14 . . . . . . . 8 (𝜑𝐾 ∈ (ℤ𝑀))
109108adantr 270 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
110 uztrn 9035 . . . . . . 7 ((𝑥 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
111106, 109, 110syl2anc 403 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝑥 ∈ (ℤ𝑀))
1121, 4, 65, 90, 92iseqf1olemjpcl 9924 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
113111, 112syldan 276 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
114 simpr 108 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → 𝑥 ∈ (ℤ‘(𝐾 + 1)))
1153adantr 270 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → 𝐾 ∈ ℤ)
116115peano2zd 8871 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → (𝐾 + 1) ∈ ℤ)
117115zred 8868 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → 𝐾 ∈ ℝ)
118117lep1d 8392 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → 𝐾 ≤ (𝐾 + 1))
119 eluz2 9025 . . . . . . . 8 ((𝐾 + 1) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ ∧ 𝐾 ≤ (𝐾 + 1)))
120115, 116, 118, 119syl3anbrc 1127 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → (𝐾 + 1) ∈ (ℤ𝐾))
121 uztrn 9035 . . . . . . 7 ((𝑥 ∈ (ℤ‘(𝐾 + 1)) ∧ (𝐾 + 1) ∈ (ℤ𝐾)) → 𝑥 ∈ (ℤ𝐾))
122114, 120, 121syl2anc 403 . . . . . 6 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → 𝑥 ∈ (ℤ𝐾))
1231, 4, 65, 90, 92iseqf1olemqpcl 9925 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
124111, 123syldan 276 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
125122, 124syldan 276 . . . . 5 ((𝜑𝑥 ∈ (ℤ‘(𝐾 + 1))) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
126 iseqf1o.1 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
12722, 23, 105, 113, 125, 126seq3shft2 9899 . . . 4 (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘((𝐽𝐾) − 1)) = (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(((𝐽𝐾) − 1) + 1)))
12811zcnd 8869 . . . . . 6 (𝜑 → (𝐽𝐾) ∈ ℂ)
129 npcan1 7856 . . . . . 6 ((𝐽𝐾) ∈ ℂ → (((𝐽𝐾) − 1) + 1) = (𝐽𝐾))
130128, 129syl 14 . . . . 5 (𝜑 → (((𝐽𝐾) − 1) + 1) = (𝐽𝐾))
131130fveq2d 5309 . . . 4 (𝜑 → (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(((𝐽𝐾) − 1) + 1)) = (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)))
132127, 131eqtrd 2120 . . 3 (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘((𝐽𝐾) − 1)) = (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)))
133 f1ocnvfv2 5557 . . . . . 6 ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽‘(𝐽𝐾)) = 𝐾)
1344, 1, 133syl2anc 403 . . . . 5 (𝜑 → (𝐽‘(𝐽𝐾)) = 𝐾)
135134fveq2d 5309 . . . 4 (𝜑 → (𝐺‘(𝐽‘(𝐽𝐾))) = (𝐺𝐾))
1361, 4, 9, 90, 92iseqf1olemfvp 9926 . . . 4 (𝜑 → (𝐽 / 𝑓𝑃‘(𝐽𝐾)) = (𝐺‘(𝐽‘(𝐽𝐾))))
1371, 88, 1, 90, 92iseqf1olemfvp 9926 . . . . 5 (𝜑 → (𝑄 / 𝑓𝑃𝐾) = (𝐺‘(𝑄𝐾)))
1381, 4, 1, 65iseqf1olemqval 9916 . . . . . . 7 (𝜑 → (𝑄𝐾) = if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)))
13914, 1, 4, 15iseqf1olemkle 9913 . . . . . . . . . 10 (𝜑𝐾 ≤ (𝐽𝐾))
140 eluz2 9025 . . . . . . . . . 10 ((𝐽𝐾) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ 𝐾 ≤ (𝐽𝐾)))
1413, 11, 139, 140syl3anbrc 1127 . . . . . . . . 9 (𝜑 → (𝐽𝐾) ∈ (ℤ𝐾))
142 eluzfz1 9445 . . . . . . . . 9 ((𝐽𝐾) ∈ (ℤ𝐾) → 𝐾 ∈ (𝐾...(𝐽𝐾)))
143141, 142syl 14 . . . . . . . 8 (𝜑𝐾 ∈ (𝐾...(𝐽𝐾)))
144143iftrued 3400 . . . . . . 7 (𝜑 → if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)) = if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))))
145 eqidd 2089 . . . . . . . 8 (𝜑𝐾 = 𝐾)
146145iftrued 3400 . . . . . . 7 (𝜑 → if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))) = 𝐾)
147138, 144, 1463eqtrd 2124 . . . . . 6 (𝜑 → (𝑄𝐾) = 𝐾)
148147fveq2d 5309 . . . . 5 (𝜑 → (𝐺‘(𝑄𝐾)) = (𝐺𝐾))
149137, 148eqtrd 2120 . . . 4 (𝜑 → (𝑄 / 𝑓𝑃𝐾) = (𝐺𝐾))
150135, 136, 1493eqtr4d 2130 . . 3 (𝜑 → (𝐽 / 𝑓𝑃‘(𝐽𝐾)) = (𝑄 / 𝑓𝑃𝐾))
151132, 150oveq12d 5670 . 2 (𝜑 → ((seq𝐾( + , 𝐽 / 𝑓𝑃)‘((𝐽𝐾) − 1)) + (𝐽 / 𝑓𝑃‘(𝐽𝐾))) = ((seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) + (𝑄 / 𝑓𝑃𝐾)))
1523peano2zd 8871 . . . 4 (𝜑 → (𝐾 + 1) ∈ ℤ)
153 zltp1le 8804 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → (𝐾 < (𝐽𝐾) ↔ (𝐾 + 1) ≤ (𝐽𝐾)))
1543, 11, 153syl2anc 403 . . . . 5 (𝜑 → (𝐾 < (𝐽𝐾) ↔ (𝐾 + 1) ≤ (𝐽𝐾)))
15517, 154mpbid 145 . . . 4 (𝜑 → (𝐾 + 1) ≤ (𝐽𝐾))
156 eluz2 9025 . . . 4 ((𝐽𝐾) ∈ (ℤ‘(𝐾 + 1)) ↔ ((𝐾 + 1) ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ (𝐾 + 1) ≤ (𝐽𝐾)))
157152, 11, 155, 156syl3anbrc 1127 . . 3 (𝜑 → (𝐽𝐾) ∈ (ℤ‘(𝐾 + 1)))
1583, 157, 113, 126seq3m1 9889 . 2 (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘(𝐽𝐾)) = ((seq𝐾( + , 𝐽 / 𝑓𝑃)‘((𝐽𝐾) − 1)) + (𝐽 / 𝑓𝑃‘(𝐽𝐾))))
159 iseqf1o.3 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
160126, 159, 157, 3, 124seq3-1p 9909 . . 3 (𝜑 → (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) = ((𝑄 / 𝑓𝑃𝐾) + (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾))))
161 iseqf1o.2 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
162 fveq2 5305 . . . . . . 7 (𝑥 = (𝑄𝐾) → (𝐺𝑥) = (𝐺‘(𝑄𝐾)))
163162eleq1d 2156 . . . . . 6 (𝑥 = (𝑄𝐾) → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺‘(𝑄𝐾)) ∈ 𝑆))
16490ralrimiva 2446 . . . . . 6 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
165147, 108eqeltrd 2164 . . . . . 6 (𝜑 → (𝑄𝐾) ∈ (ℤ𝑀))
166163, 164, 165rspcdva 2727 . . . . 5 (𝜑 → (𝐺‘(𝑄𝐾)) ∈ 𝑆)
167137, 166eqeltrd 2164 . . . 4 (𝜑 → (𝑄 / 𝑓𝑃𝐾) ∈ 𝑆)
168 eqid 2088 . . . . . 6 (ℤ‘(𝐾 + 1)) = (ℤ‘(𝐾 + 1))
169168, 152, 125, 126seqf 9880 . . . . 5 (𝜑 → seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃):(ℤ‘(𝐾 + 1))⟶𝑆)
170169, 157ffvelrnd 5435 . . . 4 (𝜑 → (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) ∈ 𝑆)
171161, 167, 170caovcomd 5801 . . 3 (𝜑 → ((𝑄 / 𝑓𝑃𝐾) + (seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾))) = ((seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) + (𝑄 / 𝑓𝑃𝐾)))
172160, 171eqtrd 2120 . 2 (𝜑 → (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) = ((seq(𝐾 + 1)( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) + (𝑄 / 𝑓𝑃𝐾)))
173151, 158, 1723eqtr4d 2130 1 (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘(𝐽𝐾)) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 924   = wceq 1289  wcel 1438  wne 2255  wral 2359  csb 2933  ifcif 3393   class class class wbr 3845  cmpt 3899  ccnv 4437  wf 5011  1-1-ontowf1o 5014  cfv 5015  (class class class)co 5652  cc 7348  cr 7349  1c1 7351   + caddc 7353   < clt 7522  cle 7523  cmin 7653  cz 8750  cuz 9019  ...cfz 9424  ..^cfzo 9553  seqcseq 9852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-addcom 7445  ax-addass 7447  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-0id 7453  ax-rnegex 7454  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-frec 6156  df-1o 6181  df-er 6292  df-en 6458  df-fin 6460  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-inn 8423  df-n0 8674  df-z 8751  df-uz 9020  df-fz 9425  df-fzo 9554  df-iseq 9853  df-seq3 9854
This theorem is referenced by:  seq3f1olemqsumk  9928
  Copyright terms: Public domain W3C validator