ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshft2 GIF version

Theorem climshft2 11316
Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
Hypotheses
Ref Expression
climshft2.1 𝑍 = (ℤ𝑀)
climshft2.2 (𝜑𝑀 ∈ ℤ)
climshft2.3 (𝜑𝐾 ∈ ℤ)
climshft2.5 (𝜑𝐹𝑊)
climshft2.6 (𝜑𝐺𝑋)
climshft2.7 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹𝑘))
Assertion
Ref Expression
climshft2 (𝜑 → (𝐹𝐴𝐺𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝐴,𝑘
Allowed substitution hints:   𝑊(𝑘)   𝑋(𝑘)

Proof of Theorem climshft2
StepHypRef Expression
1 climshft2.1 . . 3 𝑍 = (ℤ𝑀)
2 climshft2.6 . . . 4 (𝜑𝐺𝑋)
3 climshft2.3 . . . . . 6 (𝜑𝐾 ∈ ℤ)
43zcnd 9378 . . . . 5 (𝜑𝐾 ∈ ℂ)
54negcld 8257 . . . 4 (𝜑 → -𝐾 ∈ ℂ)
6 ovshftex 10830 . . . 4 ((𝐺𝑋 ∧ -𝐾 ∈ ℂ) → (𝐺 shift -𝐾) ∈ V)
72, 5, 6syl2anc 411 . . 3 (𝜑 → (𝐺 shift -𝐾) ∈ V)
8 climshft2.5 . . 3 (𝜑𝐹𝑊)
9 climshft2.2 . . 3 (𝜑𝑀 ∈ ℤ)
10 funi 5250 . . . . . . . 8 Fun I
11 elex 2750 . . . . . . . . . 10 (𝐺𝑋𝐺 ∈ V)
122, 11syl 14 . . . . . . . . 9 (𝜑𝐺 ∈ V)
13 dmi 4844 . . . . . . . . 9 dom I = V
1412, 13eleqtrrdi 2271 . . . . . . . 8 (𝜑𝐺 ∈ dom I )
15 funfvex 5534 . . . . . . . 8 ((Fun I ∧ 𝐺 ∈ dom I ) → ( I ‘𝐺) ∈ V)
1610, 14, 15sylancr 414 . . . . . . 7 (𝜑 → ( I ‘𝐺) ∈ V)
1716adantr 276 . . . . . 6 ((𝜑𝑘𝑍) → ( I ‘𝐺) ∈ V)
184adantr 276 . . . . . 6 ((𝜑𝑘𝑍) → 𝐾 ∈ ℂ)
19 eluzelz 9539 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
2019, 1eleq2s 2272 . . . . . . . 8 (𝑘𝑍𝑘 ∈ ℤ)
2120zcnd 9378 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℂ)
2221adantl 277 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℂ)
23 shftval4g 10848 . . . . . 6 ((( I ‘𝐺) ∈ V ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘)))
2417, 18, 22, 23syl3anc 1238 . . . . 5 ((𝜑𝑘𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘)))
25 fvi 5575 . . . . . . . . 9 (𝐺𝑋 → ( I ‘𝐺) = 𝐺)
262, 25syl 14 . . . . . . . 8 (𝜑 → ( I ‘𝐺) = 𝐺)
2726adantr 276 . . . . . . 7 ((𝜑𝑘𝑍) → ( I ‘𝐺) = 𝐺)
2827oveq1d 5892 . . . . . 6 ((𝜑𝑘𝑍) → (( I ‘𝐺) shift -𝐾) = (𝐺 shift -𝐾))
2928fveq1d 5519 . . . . 5 ((𝜑𝑘𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = ((𝐺 shift -𝐾)‘𝑘))
30 addcom 8096 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
314, 21, 30syl2an 289 . . . . . 6 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
3227, 31fveq12d 5524 . . . . 5 ((𝜑𝑘𝑍) → (( I ‘𝐺)‘(𝐾 + 𝑘)) = (𝐺‘(𝑘 + 𝐾)))
3324, 29, 323eqtr3d 2218 . . . 4 ((𝜑𝑘𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐺‘(𝑘 + 𝐾)))
34 climshft2.7 . . . 4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹𝑘))
3533, 34eqtrd 2210 . . 3 ((𝜑𝑘𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐹𝑘))
361, 7, 8, 9, 35climeq 11309 . 2 (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴𝐹𝐴))
373znegcld 9379 . . 3 (𝜑 → -𝐾 ∈ ℤ)
38 climshft 11314 . . 3 ((-𝐾 ∈ ℤ ∧ 𝐺𝑋) → ((𝐺 shift -𝐾) ⇝ 𝐴𝐺𝐴))
3937, 2, 38syl2anc 411 . 2 (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴𝐺𝐴))
4036, 39bitr3d 190 1 (𝜑 → (𝐹𝐴𝐺𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  Vcvv 2739   class class class wbr 4005   I cid 4290  dom cdm 4628  Fun wfun 5212  cfv 5218  (class class class)co 5877  cc 7811   + caddc 7816  -cneg 8131  cz 9255  cuz 9530   shift cshi 10825  cli 11288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-shft 10826  df-clim 11289
This theorem is referenced by:  trireciplem  11510
  Copyright terms: Public domain W3C validator