| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climshft2 | GIF version | ||
| Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.) |
| Ref | Expression |
|---|---|
| climshft2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climshft2.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climshft2.3 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| climshft2.5 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| climshft2.6 | ⊢ (𝜑 → 𝐺 ∈ 𝑋) |
| climshft2.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| climshft2 | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climshft2.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climshft2.6 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑋) | |
| 3 | climshft2.3 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 4 | 3 | zcnd 9466 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 5 | 4 | negcld 8341 | . . . 4 ⊢ (𝜑 → -𝐾 ∈ ℂ) |
| 6 | ovshftex 11001 | . . . 4 ⊢ ((𝐺 ∈ 𝑋 ∧ -𝐾 ∈ ℂ) → (𝐺 shift -𝐾) ∈ V) | |
| 7 | 2, 5, 6 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐺 shift -𝐾) ∈ V) |
| 8 | climshft2.5 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
| 9 | climshft2.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 10 | funi 5291 | . . . . . . . 8 ⊢ Fun I | |
| 11 | elex 2774 | . . . . . . . . . 10 ⊢ (𝐺 ∈ 𝑋 → 𝐺 ∈ V) | |
| 12 | 2, 11 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ V) |
| 13 | dmi 4882 | . . . . . . . . 9 ⊢ dom I = V | |
| 14 | 12, 13 | eleqtrrdi 2290 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ dom I ) |
| 15 | funfvex 5578 | . . . . . . . 8 ⊢ ((Fun I ∧ 𝐺 ∈ dom I ) → ( I ‘𝐺) ∈ V) | |
| 16 | 10, 14, 15 | sylancr 414 | . . . . . . 7 ⊢ (𝜑 → ( I ‘𝐺) ∈ V) |
| 17 | 16 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ( I ‘𝐺) ∈ V) |
| 18 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐾 ∈ ℂ) |
| 19 | eluzelz 9627 | . . . . . . . . 9 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | |
| 20 | 19, 1 | eleq2s 2291 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
| 21 | 20 | zcnd 9466 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ) |
| 22 | 21 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℂ) |
| 23 | shftval4g 11019 | . . . . . 6 ⊢ ((( I ‘𝐺) ∈ V ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘))) | |
| 24 | 17, 18, 22, 23 | syl3anc 1249 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘))) |
| 25 | fvi 5621 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝑋 → ( I ‘𝐺) = 𝐺) | |
| 26 | 2, 25 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → ( I ‘𝐺) = 𝐺) |
| 27 | 26 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ( I ‘𝐺) = 𝐺) |
| 28 | 27 | oveq1d 5940 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (( I ‘𝐺) shift -𝐾) = (𝐺 shift -𝐾)) |
| 29 | 28 | fveq1d 5563 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = ((𝐺 shift -𝐾)‘𝑘)) |
| 30 | addcom 8180 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) | |
| 31 | 4, 21, 30 | syl2an 289 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) |
| 32 | 27, 31 | fveq12d 5568 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (( I ‘𝐺)‘(𝐾 + 𝑘)) = (𝐺‘(𝑘 + 𝐾))) |
| 33 | 24, 29, 32 | 3eqtr3d 2237 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐺‘(𝑘 + 𝐾))) |
| 34 | climshft2.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) | |
| 35 | 33, 34 | eqtrd 2229 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐹‘𝑘)) |
| 36 | 1, 7, 8, 9, 35 | climeq 11481 | . 2 ⊢ (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| 37 | 3 | znegcld 9467 | . . 3 ⊢ (𝜑 → -𝐾 ∈ ℤ) |
| 38 | climshft 11486 | . . 3 ⊢ ((-𝐾 ∈ ℤ ∧ 𝐺 ∈ 𝑋) → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | |
| 39 | 37, 2, 38 | syl2anc 411 | . 2 ⊢ (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| 40 | 36, 39 | bitr3d 190 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 class class class wbr 4034 I cid 4324 dom cdm 4664 Fun wfun 5253 ‘cfv 5259 (class class class)co 5925 ℂcc 7894 + caddc 7899 -cneg 8215 ℤcz 9343 ℤ≥cuz 9618 shift cshi 10996 ⇝ cli 11460 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-shft 10997 df-clim 11461 |
| This theorem is referenced by: trireciplem 11682 |
| Copyright terms: Public domain | W3C validator |