| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climshft2 | GIF version | ||
| Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.) |
| Ref | Expression |
|---|---|
| climshft2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climshft2.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climshft2.3 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| climshft2.5 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| climshft2.6 | ⊢ (𝜑 → 𝐺 ∈ 𝑋) |
| climshft2.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| climshft2 | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climshft2.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climshft2.6 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑋) | |
| 3 | climshft2.3 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 4 | 3 | zcnd 9516 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 5 | 4 | negcld 8390 | . . . 4 ⊢ (𝜑 → -𝐾 ∈ ℂ) |
| 6 | ovshftex 11205 | . . . 4 ⊢ ((𝐺 ∈ 𝑋 ∧ -𝐾 ∈ ℂ) → (𝐺 shift -𝐾) ∈ V) | |
| 7 | 2, 5, 6 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐺 shift -𝐾) ∈ V) |
| 8 | climshft2.5 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
| 9 | climshft2.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 10 | funi 5312 | . . . . . . . 8 ⊢ Fun I | |
| 11 | elex 2785 | . . . . . . . . . 10 ⊢ (𝐺 ∈ 𝑋 → 𝐺 ∈ V) | |
| 12 | 2, 11 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ V) |
| 13 | dmi 4902 | . . . . . . . . 9 ⊢ dom I = V | |
| 14 | 12, 13 | eleqtrrdi 2300 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ dom I ) |
| 15 | funfvex 5606 | . . . . . . . 8 ⊢ ((Fun I ∧ 𝐺 ∈ dom I ) → ( I ‘𝐺) ∈ V) | |
| 16 | 10, 14, 15 | sylancr 414 | . . . . . . 7 ⊢ (𝜑 → ( I ‘𝐺) ∈ V) |
| 17 | 16 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ( I ‘𝐺) ∈ V) |
| 18 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐾 ∈ ℂ) |
| 19 | eluzelz 9677 | . . . . . . . . 9 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | |
| 20 | 19, 1 | eleq2s 2301 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
| 21 | 20 | zcnd 9516 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ) |
| 22 | 21 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℂ) |
| 23 | shftval4g 11223 | . . . . . 6 ⊢ ((( I ‘𝐺) ∈ V ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘))) | |
| 24 | 17, 18, 22, 23 | syl3anc 1250 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘))) |
| 25 | fvi 5649 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝑋 → ( I ‘𝐺) = 𝐺) | |
| 26 | 2, 25 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → ( I ‘𝐺) = 𝐺) |
| 27 | 26 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ( I ‘𝐺) = 𝐺) |
| 28 | 27 | oveq1d 5972 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (( I ‘𝐺) shift -𝐾) = (𝐺 shift -𝐾)) |
| 29 | 28 | fveq1d 5591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = ((𝐺 shift -𝐾)‘𝑘)) |
| 30 | addcom 8229 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) | |
| 31 | 4, 21, 30 | syl2an 289 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) |
| 32 | 27, 31 | fveq12d 5596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (( I ‘𝐺)‘(𝐾 + 𝑘)) = (𝐺‘(𝑘 + 𝐾))) |
| 33 | 24, 29, 32 | 3eqtr3d 2247 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐺‘(𝑘 + 𝐾))) |
| 34 | climshft2.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) | |
| 35 | 33, 34 | eqtrd 2239 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐹‘𝑘)) |
| 36 | 1, 7, 8, 9, 35 | climeq 11685 | . 2 ⊢ (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| 37 | 3 | znegcld 9517 | . . 3 ⊢ (𝜑 → -𝐾 ∈ ℤ) |
| 38 | climshft 11690 | . . 3 ⊢ ((-𝐾 ∈ ℤ ∧ 𝐺 ∈ 𝑋) → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | |
| 39 | 37, 2, 38 | syl2anc 411 | . 2 ⊢ (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| 40 | 36, 39 | bitr3d 190 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 Vcvv 2773 class class class wbr 4051 I cid 4343 dom cdm 4683 Fun wfun 5274 ‘cfv 5280 (class class class)co 5957 ℂcc 7943 + caddc 7948 -cneg 8264 ℤcz 9392 ℤ≥cuz 9668 shift cshi 11200 ⇝ cli 11664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 df-shft 11201 df-clim 11665 |
| This theorem is referenced by: trireciplem 11886 |
| Copyright terms: Public domain | W3C validator |