| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climshft2 | GIF version | ||
| Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.) |
| Ref | Expression |
|---|---|
| climshft2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climshft2.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climshft2.3 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| climshft2.5 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| climshft2.6 | ⊢ (𝜑 → 𝐺 ∈ 𝑋) |
| climshft2.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| climshft2 | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climshft2.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climshft2.6 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑋) | |
| 3 | climshft2.3 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 4 | 3 | zcnd 9566 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 5 | 4 | negcld 8440 | . . . 4 ⊢ (𝜑 → -𝐾 ∈ ℂ) |
| 6 | ovshftex 11325 | . . . 4 ⊢ ((𝐺 ∈ 𝑋 ∧ -𝐾 ∈ ℂ) → (𝐺 shift -𝐾) ∈ V) | |
| 7 | 2, 5, 6 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐺 shift -𝐾) ∈ V) |
| 8 | climshft2.5 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
| 9 | climshft2.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 10 | funi 5349 | . . . . . . . 8 ⊢ Fun I | |
| 11 | elex 2811 | . . . . . . . . . 10 ⊢ (𝐺 ∈ 𝑋 → 𝐺 ∈ V) | |
| 12 | 2, 11 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ V) |
| 13 | dmi 4937 | . . . . . . . . 9 ⊢ dom I = V | |
| 14 | 12, 13 | eleqtrrdi 2323 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ dom I ) |
| 15 | funfvex 5643 | . . . . . . . 8 ⊢ ((Fun I ∧ 𝐺 ∈ dom I ) → ( I ‘𝐺) ∈ V) | |
| 16 | 10, 14, 15 | sylancr 414 | . . . . . . 7 ⊢ (𝜑 → ( I ‘𝐺) ∈ V) |
| 17 | 16 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ( I ‘𝐺) ∈ V) |
| 18 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐾 ∈ ℂ) |
| 19 | eluzelz 9727 | . . . . . . . . 9 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | |
| 20 | 19, 1 | eleq2s 2324 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
| 21 | 20 | zcnd 9566 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ) |
| 22 | 21 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℂ) |
| 23 | shftval4g 11343 | . . . . . 6 ⊢ ((( I ‘𝐺) ∈ V ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘))) | |
| 24 | 17, 18, 22, 23 | syl3anc 1271 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘))) |
| 25 | fvi 5690 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝑋 → ( I ‘𝐺) = 𝐺) | |
| 26 | 2, 25 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → ( I ‘𝐺) = 𝐺) |
| 27 | 26 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ( I ‘𝐺) = 𝐺) |
| 28 | 27 | oveq1d 6015 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (( I ‘𝐺) shift -𝐾) = (𝐺 shift -𝐾)) |
| 29 | 28 | fveq1d 5628 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = ((𝐺 shift -𝐾)‘𝑘)) |
| 30 | addcom 8279 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) | |
| 31 | 4, 21, 30 | syl2an 289 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) |
| 32 | 27, 31 | fveq12d 5633 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (( I ‘𝐺)‘(𝐾 + 𝑘)) = (𝐺‘(𝑘 + 𝐾))) |
| 33 | 24, 29, 32 | 3eqtr3d 2270 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐺‘(𝑘 + 𝐾))) |
| 34 | climshft2.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) | |
| 35 | 33, 34 | eqtrd 2262 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐹‘𝑘)) |
| 36 | 1, 7, 8, 9, 35 | climeq 11805 | . 2 ⊢ (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| 37 | 3 | znegcld 9567 | . . 3 ⊢ (𝜑 → -𝐾 ∈ ℤ) |
| 38 | climshft 11810 | . . 3 ⊢ ((-𝐾 ∈ ℤ ∧ 𝐺 ∈ 𝑋) → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | |
| 39 | 37, 2, 38 | syl2anc 411 | . 2 ⊢ (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| 40 | 36, 39 | bitr3d 190 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 class class class wbr 4082 I cid 4378 dom cdm 4718 Fun wfun 5311 ‘cfv 5317 (class class class)co 6000 ℂcc 7993 + caddc 7998 -cneg 8314 ℤcz 9442 ℤ≥cuz 9718 shift cshi 11320 ⇝ cli 11784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-shft 11321 df-clim 11785 |
| This theorem is referenced by: trireciplem 12006 |
| Copyright terms: Public domain | W3C validator |