ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshft2 GIF version

Theorem climshft2 10758
Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
Hypotheses
Ref Expression
climshft2.1 𝑍 = (ℤ𝑀)
climshft2.2 (𝜑𝑀 ∈ ℤ)
climshft2.3 (𝜑𝐾 ∈ ℤ)
climshft2.5 (𝜑𝐹𝑊)
climshft2.6 (𝜑𝐺𝑋)
climshft2.7 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹𝑘))
Assertion
Ref Expression
climshft2 (𝜑 → (𝐹𝐴𝐺𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝐴,𝑘
Allowed substitution hints:   𝑊(𝑘)   𝑋(𝑘)

Proof of Theorem climshft2
StepHypRef Expression
1 climshft2.1 . . 3 𝑍 = (ℤ𝑀)
2 climshft2.6 . . . 4 (𝜑𝐺𝑋)
3 climshft2.3 . . . . . 6 (𝜑𝐾 ∈ ℤ)
43zcnd 8932 . . . . 5 (𝜑𝐾 ∈ ℂ)
54negcld 7843 . . . 4 (𝜑 → -𝐾 ∈ ℂ)
6 ovshftex 10316 . . . 4 ((𝐺𝑋 ∧ -𝐾 ∈ ℂ) → (𝐺 shift -𝐾) ∈ V)
72, 5, 6syl2anc 404 . . 3 (𝜑 → (𝐺 shift -𝐾) ∈ V)
8 climshft2.5 . . 3 (𝜑𝐹𝑊)
9 climshft2.2 . . 3 (𝜑𝑀 ∈ ℤ)
10 funi 5061 . . . . . . . 8 Fun I
11 elex 2633 . . . . . . . . . 10 (𝐺𝑋𝐺 ∈ V)
122, 11syl 14 . . . . . . . . 9 (𝜑𝐺 ∈ V)
13 dmi 4666 . . . . . . . . 9 dom I = V
1412, 13syl6eleqr 2182 . . . . . . . 8 (𝜑𝐺 ∈ dom I )
15 funfvex 5337 . . . . . . . 8 ((Fun I ∧ 𝐺 ∈ dom I ) → ( I ‘𝐺) ∈ V)
1610, 14, 15sylancr 406 . . . . . . 7 (𝜑 → ( I ‘𝐺) ∈ V)
1716adantr 271 . . . . . 6 ((𝜑𝑘𝑍) → ( I ‘𝐺) ∈ V)
184adantr 271 . . . . . 6 ((𝜑𝑘𝑍) → 𝐾 ∈ ℂ)
19 eluzelz 9091 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
2019, 1eleq2s 2183 . . . . . . . 8 (𝑘𝑍𝑘 ∈ ℤ)
2120zcnd 8932 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℂ)
2221adantl 272 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℂ)
23 shftval4g 10334 . . . . . 6 ((( I ‘𝐺) ∈ V ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘)))
2417, 18, 22, 23syl3anc 1175 . . . . 5 ((𝜑𝑘𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘)))
25 fvi 5376 . . . . . . . . 9 (𝐺𝑋 → ( I ‘𝐺) = 𝐺)
262, 25syl 14 . . . . . . . 8 (𝜑 → ( I ‘𝐺) = 𝐺)
2726adantr 271 . . . . . . 7 ((𝜑𝑘𝑍) → ( I ‘𝐺) = 𝐺)
2827oveq1d 5683 . . . . . 6 ((𝜑𝑘𝑍) → (( I ‘𝐺) shift -𝐾) = (𝐺 shift -𝐾))
2928fveq1d 5322 . . . . 5 ((𝜑𝑘𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = ((𝐺 shift -𝐾)‘𝑘))
30 addcom 7682 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
314, 21, 30syl2an 284 . . . . . 6 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
3227, 31fveq12d 5327 . . . . 5 ((𝜑𝑘𝑍) → (( I ‘𝐺)‘(𝐾 + 𝑘)) = (𝐺‘(𝑘 + 𝐾)))
3324, 29, 323eqtr3d 2129 . . . 4 ((𝜑𝑘𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐺‘(𝑘 + 𝐾)))
34 climshft2.7 . . . 4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹𝑘))
3533, 34eqtrd 2121 . . 3 ((𝜑𝑘𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐹𝑘))
361, 7, 8, 9, 35climeq 10750 . 2 (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴𝐹𝐴))
373znegcld 8933 . . 3 (𝜑 → -𝐾 ∈ ℤ)
38 climshft 10755 . . 3 ((-𝐾 ∈ ℤ ∧ 𝐺𝑋) → ((𝐺 shift -𝐾) ⇝ 𝐴𝐺𝐴))
3937, 2, 38syl2anc 404 . 2 (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴𝐺𝐴))
4036, 39bitr3d 189 1 (𝜑 → (𝐹𝐴𝐺𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1290  wcel 1439  Vcvv 2622   class class class wbr 3853   I cid 4126  dom cdm 4454  Fun wfun 5024  cfv 5030  (class class class)co 5668  cc 7411   + caddc 7416  -cneg 7717  cz 8813  cuz 9082   shift cshi 10311  cli 10729
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3962  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-addcom 7508  ax-addass 7510  ax-distr 7512  ax-i2m1 7513  ax-0lt1 7514  ax-0id 7516  ax-rnegex 7517  ax-cnre 7519  ax-pre-ltirr 7520  ax-pre-ltwlin 7521  ax-pre-lttrn 7522  ax-pre-apti 7523  ax-pre-ltadd 7524
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-if 3400  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-iun 3740  df-br 3854  df-opab 3908  df-mpt 3909  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-pnf 7587  df-mnf 7588  df-xr 7589  df-ltxr 7590  df-le 7591  df-sub 7718  df-neg 7719  df-inn 8486  df-n0 8737  df-z 8814  df-uz 9083  df-shft 10312  df-clim 10730
This theorem is referenced by:  trireciplem  10957
  Copyright terms: Public domain W3C validator