ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshft2 GIF version

Theorem climshft2 11082
Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
Hypotheses
Ref Expression
climshft2.1 𝑍 = (ℤ𝑀)
climshft2.2 (𝜑𝑀 ∈ ℤ)
climshft2.3 (𝜑𝐾 ∈ ℤ)
climshft2.5 (𝜑𝐹𝑊)
climshft2.6 (𝜑𝐺𝑋)
climshft2.7 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹𝑘))
Assertion
Ref Expression
climshft2 (𝜑 → (𝐹𝐴𝐺𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝐴,𝑘
Allowed substitution hints:   𝑊(𝑘)   𝑋(𝑘)

Proof of Theorem climshft2
StepHypRef Expression
1 climshft2.1 . . 3 𝑍 = (ℤ𝑀)
2 climshft2.6 . . . 4 (𝜑𝐺𝑋)
3 climshft2.3 . . . . . 6 (𝜑𝐾 ∈ ℤ)
43zcnd 9181 . . . . 5 (𝜑𝐾 ∈ ℂ)
54negcld 8067 . . . 4 (𝜑 → -𝐾 ∈ ℂ)
6 ovshftex 10598 . . . 4 ((𝐺𝑋 ∧ -𝐾 ∈ ℂ) → (𝐺 shift -𝐾) ∈ V)
72, 5, 6syl2anc 408 . . 3 (𝜑 → (𝐺 shift -𝐾) ∈ V)
8 climshft2.5 . . 3 (𝜑𝐹𝑊)
9 climshft2.2 . . 3 (𝜑𝑀 ∈ ℤ)
10 funi 5155 . . . . . . . 8 Fun I
11 elex 2697 . . . . . . . . . 10 (𝐺𝑋𝐺 ∈ V)
122, 11syl 14 . . . . . . . . 9 (𝜑𝐺 ∈ V)
13 dmi 4754 . . . . . . . . 9 dom I = V
1412, 13eleqtrrdi 2233 . . . . . . . 8 (𝜑𝐺 ∈ dom I )
15 funfvex 5438 . . . . . . . 8 ((Fun I ∧ 𝐺 ∈ dom I ) → ( I ‘𝐺) ∈ V)
1610, 14, 15sylancr 410 . . . . . . 7 (𝜑 → ( I ‘𝐺) ∈ V)
1716adantr 274 . . . . . 6 ((𝜑𝑘𝑍) → ( I ‘𝐺) ∈ V)
184adantr 274 . . . . . 6 ((𝜑𝑘𝑍) → 𝐾 ∈ ℂ)
19 eluzelz 9342 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
2019, 1eleq2s 2234 . . . . . . . 8 (𝑘𝑍𝑘 ∈ ℤ)
2120zcnd 9181 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℂ)
2221adantl 275 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℂ)
23 shftval4g 10616 . . . . . 6 ((( I ‘𝐺) ∈ V ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘)))
2417, 18, 22, 23syl3anc 1216 . . . . 5 ((𝜑𝑘𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘)))
25 fvi 5478 . . . . . . . . 9 (𝐺𝑋 → ( I ‘𝐺) = 𝐺)
262, 25syl 14 . . . . . . . 8 (𝜑 → ( I ‘𝐺) = 𝐺)
2726adantr 274 . . . . . . 7 ((𝜑𝑘𝑍) → ( I ‘𝐺) = 𝐺)
2827oveq1d 5789 . . . . . 6 ((𝜑𝑘𝑍) → (( I ‘𝐺) shift -𝐾) = (𝐺 shift -𝐾))
2928fveq1d 5423 . . . . 5 ((𝜑𝑘𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = ((𝐺 shift -𝐾)‘𝑘))
30 addcom 7906 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
314, 21, 30syl2an 287 . . . . . 6 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
3227, 31fveq12d 5428 . . . . 5 ((𝜑𝑘𝑍) → (( I ‘𝐺)‘(𝐾 + 𝑘)) = (𝐺‘(𝑘 + 𝐾)))
3324, 29, 323eqtr3d 2180 . . . 4 ((𝜑𝑘𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐺‘(𝑘 + 𝐾)))
34 climshft2.7 . . . 4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹𝑘))
3533, 34eqtrd 2172 . . 3 ((𝜑𝑘𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐹𝑘))
361, 7, 8, 9, 35climeq 11075 . 2 (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴𝐹𝐴))
373znegcld 9182 . . 3 (𝜑 → -𝐾 ∈ ℤ)
38 climshft 11080 . . 3 ((-𝐾 ∈ ℤ ∧ 𝐺𝑋) → ((𝐺 shift -𝐾) ⇝ 𝐴𝐺𝐴))
3937, 2, 38syl2anc 408 . 2 (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴𝐺𝐴))
4036, 39bitr3d 189 1 (𝜑 → (𝐹𝐴𝐺𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  Vcvv 2686   class class class wbr 3929   I cid 4210  dom cdm 4539  Fun wfun 5117  cfv 5123  (class class class)co 5774  cc 7625   + caddc 7630  -cneg 7941  cz 9061  cuz 9333   shift cshi 10593  cli 11054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-inn 8728  df-n0 8985  df-z 9062  df-uz 9334  df-shft 10594  df-clim 11055
This theorem is referenced by:  trireciplem  11276
  Copyright terms: Public domain W3C validator