ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshft2 GIF version

Theorem climshft2 11247
Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
Hypotheses
Ref Expression
climshft2.1 𝑍 = (ℤ𝑀)
climshft2.2 (𝜑𝑀 ∈ ℤ)
climshft2.3 (𝜑𝐾 ∈ ℤ)
climshft2.5 (𝜑𝐹𝑊)
climshft2.6 (𝜑𝐺𝑋)
climshft2.7 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹𝑘))
Assertion
Ref Expression
climshft2 (𝜑 → (𝐹𝐴𝐺𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝐴,𝑘
Allowed substitution hints:   𝑊(𝑘)   𝑋(𝑘)

Proof of Theorem climshft2
StepHypRef Expression
1 climshft2.1 . . 3 𝑍 = (ℤ𝑀)
2 climshft2.6 . . . 4 (𝜑𝐺𝑋)
3 climshft2.3 . . . . . 6 (𝜑𝐾 ∈ ℤ)
43zcnd 9314 . . . . 5 (𝜑𝐾 ∈ ℂ)
54negcld 8196 . . . 4 (𝜑 → -𝐾 ∈ ℂ)
6 ovshftex 10761 . . . 4 ((𝐺𝑋 ∧ -𝐾 ∈ ℂ) → (𝐺 shift -𝐾) ∈ V)
72, 5, 6syl2anc 409 . . 3 (𝜑 → (𝐺 shift -𝐾) ∈ V)
8 climshft2.5 . . 3 (𝜑𝐹𝑊)
9 climshft2.2 . . 3 (𝜑𝑀 ∈ ℤ)
10 funi 5220 . . . . . . . 8 Fun I
11 elex 2737 . . . . . . . . . 10 (𝐺𝑋𝐺 ∈ V)
122, 11syl 14 . . . . . . . . 9 (𝜑𝐺 ∈ V)
13 dmi 4819 . . . . . . . . 9 dom I = V
1412, 13eleqtrrdi 2260 . . . . . . . 8 (𝜑𝐺 ∈ dom I )
15 funfvex 5503 . . . . . . . 8 ((Fun I ∧ 𝐺 ∈ dom I ) → ( I ‘𝐺) ∈ V)
1610, 14, 15sylancr 411 . . . . . . 7 (𝜑 → ( I ‘𝐺) ∈ V)
1716adantr 274 . . . . . 6 ((𝜑𝑘𝑍) → ( I ‘𝐺) ∈ V)
184adantr 274 . . . . . 6 ((𝜑𝑘𝑍) → 𝐾 ∈ ℂ)
19 eluzelz 9475 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
2019, 1eleq2s 2261 . . . . . . . 8 (𝑘𝑍𝑘 ∈ ℤ)
2120zcnd 9314 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℂ)
2221adantl 275 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℂ)
23 shftval4g 10779 . . . . . 6 ((( I ‘𝐺) ∈ V ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘)))
2417, 18, 22, 23syl3anc 1228 . . . . 5 ((𝜑𝑘𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘)))
25 fvi 5543 . . . . . . . . 9 (𝐺𝑋 → ( I ‘𝐺) = 𝐺)
262, 25syl 14 . . . . . . . 8 (𝜑 → ( I ‘𝐺) = 𝐺)
2726adantr 274 . . . . . . 7 ((𝜑𝑘𝑍) → ( I ‘𝐺) = 𝐺)
2827oveq1d 5857 . . . . . 6 ((𝜑𝑘𝑍) → (( I ‘𝐺) shift -𝐾) = (𝐺 shift -𝐾))
2928fveq1d 5488 . . . . 5 ((𝜑𝑘𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = ((𝐺 shift -𝐾)‘𝑘))
30 addcom 8035 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
314, 21, 30syl2an 287 . . . . . 6 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
3227, 31fveq12d 5493 . . . . 5 ((𝜑𝑘𝑍) → (( I ‘𝐺)‘(𝐾 + 𝑘)) = (𝐺‘(𝑘 + 𝐾)))
3324, 29, 323eqtr3d 2206 . . . 4 ((𝜑𝑘𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐺‘(𝑘 + 𝐾)))
34 climshft2.7 . . . 4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹𝑘))
3533, 34eqtrd 2198 . . 3 ((𝜑𝑘𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐹𝑘))
361, 7, 8, 9, 35climeq 11240 . 2 (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴𝐹𝐴))
373znegcld 9315 . . 3 (𝜑 → -𝐾 ∈ ℤ)
38 climshft 11245 . . 3 ((-𝐾 ∈ ℤ ∧ 𝐺𝑋) → ((𝐺 shift -𝐾) ⇝ 𝐴𝐺𝐴))
3937, 2, 38syl2anc 409 . 2 (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴𝐺𝐴))
4036, 39bitr3d 189 1 (𝜑 → (𝐹𝐴𝐺𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  Vcvv 2726   class class class wbr 3982   I cid 4266  dom cdm 4604  Fun wfun 5182  cfv 5188  (class class class)co 5842  cc 7751   + caddc 7756  -cneg 8070  cz 9191  cuz 9466   shift cshi 10756  cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-shft 10757  df-clim 11220
This theorem is referenced by:  trireciplem  11441
  Copyright terms: Public domain W3C validator