Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > climshft2 | GIF version |
Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.) |
Ref | Expression |
---|---|
climshft2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climshft2.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climshft2.3 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
climshft2.5 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
climshft2.6 | ⊢ (𝜑 → 𝐺 ∈ 𝑋) |
climshft2.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climshft2 | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climshft2.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climshft2.6 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑋) | |
3 | climshft2.3 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
4 | 3 | zcnd 9314 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
5 | 4 | negcld 8196 | . . . 4 ⊢ (𝜑 → -𝐾 ∈ ℂ) |
6 | ovshftex 10761 | . . . 4 ⊢ ((𝐺 ∈ 𝑋 ∧ -𝐾 ∈ ℂ) → (𝐺 shift -𝐾) ∈ V) | |
7 | 2, 5, 6 | syl2anc 409 | . . 3 ⊢ (𝜑 → (𝐺 shift -𝐾) ∈ V) |
8 | climshft2.5 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
9 | climshft2.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
10 | funi 5220 | . . . . . . . 8 ⊢ Fun I | |
11 | elex 2737 | . . . . . . . . . 10 ⊢ (𝐺 ∈ 𝑋 → 𝐺 ∈ V) | |
12 | 2, 11 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ V) |
13 | dmi 4819 | . . . . . . . . 9 ⊢ dom I = V | |
14 | 12, 13 | eleqtrrdi 2260 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ dom I ) |
15 | funfvex 5503 | . . . . . . . 8 ⊢ ((Fun I ∧ 𝐺 ∈ dom I ) → ( I ‘𝐺) ∈ V) | |
16 | 10, 14, 15 | sylancr 411 | . . . . . . 7 ⊢ (𝜑 → ( I ‘𝐺) ∈ V) |
17 | 16 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ( I ‘𝐺) ∈ V) |
18 | 4 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐾 ∈ ℂ) |
19 | eluzelz 9475 | . . . . . . . . 9 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | |
20 | 19, 1 | eleq2s 2261 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
21 | 20 | zcnd 9314 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ) |
22 | 21 | adantl 275 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℂ) |
23 | shftval4g 10779 | . . . . . 6 ⊢ ((( I ‘𝐺) ∈ V ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘))) | |
24 | 17, 18, 22, 23 | syl3anc 1228 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘))) |
25 | fvi 5543 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝑋 → ( I ‘𝐺) = 𝐺) | |
26 | 2, 25 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → ( I ‘𝐺) = 𝐺) |
27 | 26 | adantr 274 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ( I ‘𝐺) = 𝐺) |
28 | 27 | oveq1d 5857 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (( I ‘𝐺) shift -𝐾) = (𝐺 shift -𝐾)) |
29 | 28 | fveq1d 5488 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = ((𝐺 shift -𝐾)‘𝑘)) |
30 | addcom 8035 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) | |
31 | 4, 21, 30 | syl2an 287 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) |
32 | 27, 31 | fveq12d 5493 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (( I ‘𝐺)‘(𝐾 + 𝑘)) = (𝐺‘(𝑘 + 𝐾))) |
33 | 24, 29, 32 | 3eqtr3d 2206 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐺‘(𝑘 + 𝐾))) |
34 | climshft2.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) | |
35 | 33, 34 | eqtrd 2198 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐹‘𝑘)) |
36 | 1, 7, 8, 9, 35 | climeq 11240 | . 2 ⊢ (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
37 | 3 | znegcld 9315 | . . 3 ⊢ (𝜑 → -𝐾 ∈ ℤ) |
38 | climshft 11245 | . . 3 ⊢ ((-𝐾 ∈ ℤ ∧ 𝐺 ∈ 𝑋) → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | |
39 | 37, 2, 38 | syl2anc 409 | . 2 ⊢ (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
40 | 36, 39 | bitr3d 189 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 Vcvv 2726 class class class wbr 3982 I cid 4266 dom cdm 4604 Fun wfun 5182 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 + caddc 7756 -cneg 8070 ℤcz 9191 ℤ≥cuz 9466 shift cshi 10756 ⇝ cli 11219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-shft 10757 df-clim 11220 |
This theorem is referenced by: trireciplem 11441 |
Copyright terms: Public domain | W3C validator |