![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climshft2 | GIF version |
Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.) |
Ref | Expression |
---|---|
climshft2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climshft2.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climshft2.3 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
climshft2.5 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
climshft2.6 | ⊢ (𝜑 → 𝐺 ∈ 𝑋) |
climshft2.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climshft2 | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climshft2.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climshft2.6 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑋) | |
3 | climshft2.3 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
4 | 3 | zcnd 9406 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
5 | 4 | negcld 8285 | . . . 4 ⊢ (𝜑 → -𝐾 ∈ ℂ) |
6 | ovshftex 10860 | . . . 4 ⊢ ((𝐺 ∈ 𝑋 ∧ -𝐾 ∈ ℂ) → (𝐺 shift -𝐾) ∈ V) | |
7 | 2, 5, 6 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐺 shift -𝐾) ∈ V) |
8 | climshft2.5 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
9 | climshft2.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
10 | funi 5267 | . . . . . . . 8 ⊢ Fun I | |
11 | elex 2763 | . . . . . . . . . 10 ⊢ (𝐺 ∈ 𝑋 → 𝐺 ∈ V) | |
12 | 2, 11 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ V) |
13 | dmi 4860 | . . . . . . . . 9 ⊢ dom I = V | |
14 | 12, 13 | eleqtrrdi 2283 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ dom I ) |
15 | funfvex 5551 | . . . . . . . 8 ⊢ ((Fun I ∧ 𝐺 ∈ dom I ) → ( I ‘𝐺) ∈ V) | |
16 | 10, 14, 15 | sylancr 414 | . . . . . . 7 ⊢ (𝜑 → ( I ‘𝐺) ∈ V) |
17 | 16 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ( I ‘𝐺) ∈ V) |
18 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐾 ∈ ℂ) |
19 | eluzelz 9567 | . . . . . . . . 9 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | |
20 | 19, 1 | eleq2s 2284 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
21 | 20 | zcnd 9406 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ) |
22 | 21 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℂ) |
23 | shftval4g 10878 | . . . . . 6 ⊢ ((( I ‘𝐺) ∈ V ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘))) | |
24 | 17, 18, 22, 23 | syl3anc 1249 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘))) |
25 | fvi 5594 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝑋 → ( I ‘𝐺) = 𝐺) | |
26 | 2, 25 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → ( I ‘𝐺) = 𝐺) |
27 | 26 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ( I ‘𝐺) = 𝐺) |
28 | 27 | oveq1d 5911 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (( I ‘𝐺) shift -𝐾) = (𝐺 shift -𝐾)) |
29 | 28 | fveq1d 5536 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = ((𝐺 shift -𝐾)‘𝑘)) |
30 | addcom 8124 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) | |
31 | 4, 21, 30 | syl2an 289 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) |
32 | 27, 31 | fveq12d 5541 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (( I ‘𝐺)‘(𝐾 + 𝑘)) = (𝐺‘(𝑘 + 𝐾))) |
33 | 24, 29, 32 | 3eqtr3d 2230 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐺‘(𝑘 + 𝐾))) |
34 | climshft2.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) | |
35 | 33, 34 | eqtrd 2222 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐹‘𝑘)) |
36 | 1, 7, 8, 9, 35 | climeq 11339 | . 2 ⊢ (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
37 | 3 | znegcld 9407 | . . 3 ⊢ (𝜑 → -𝐾 ∈ ℤ) |
38 | climshft 11344 | . . 3 ⊢ ((-𝐾 ∈ ℤ ∧ 𝐺 ∈ 𝑋) → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | |
39 | 37, 2, 38 | syl2anc 411 | . 2 ⊢ (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
40 | 36, 39 | bitr3d 190 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 Vcvv 2752 class class class wbr 4018 I cid 4306 dom cdm 4644 Fun wfun 5229 ‘cfv 5235 (class class class)co 5896 ℂcc 7839 + caddc 7844 -cneg 8159 ℤcz 9283 ℤ≥cuz 9558 shift cshi 10855 ⇝ cli 11318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-addcom 7941 ax-addass 7943 ax-distr 7945 ax-i2m1 7946 ax-0lt1 7947 ax-0id 7949 ax-rnegex 7950 ax-cnre 7952 ax-pre-ltirr 7953 ax-pre-ltwlin 7954 ax-pre-lttrn 7955 ax-pre-apti 7956 ax-pre-ltadd 7957 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-pnf 8024 df-mnf 8025 df-xr 8026 df-ltxr 8027 df-le 8028 df-sub 8160 df-neg 8161 df-inn 8950 df-n0 9207 df-z 9284 df-uz 9559 df-shft 10856 df-clim 11319 |
This theorem is referenced by: trireciplem 11540 |
Copyright terms: Public domain | W3C validator |