Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdsval3 | GIF version |
Description: One nonzero integer divides another integer if and only if the remainder upon division is zero, see remark in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
dvdsval3 | ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 mod 𝑀) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 9231 | . . . 4 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
2 | nnne0 8906 | . . . 4 ⊢ (𝑀 ∈ ℕ → 𝑀 ≠ 0) | |
3 | 1, 2 | jca 304 | . . 3 ⊢ (𝑀 ∈ ℕ → (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) |
4 | dvdsval2 11752 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) | |
5 | 4 | 3expa 1198 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
6 | 3, 5 | sylan 281 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
7 | zq 9585 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℚ) | |
8 | 7 | adantl 275 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℚ) |
9 | nnq 9592 | . . . 4 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℚ) | |
10 | 9 | adantr 274 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℚ) |
11 | nngt0 8903 | . . . 4 ⊢ (𝑀 ∈ ℕ → 0 < 𝑀) | |
12 | 11 | adantr 274 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 0 < 𝑀) |
13 | modq0 10285 | . . 3 ⊢ ((𝑁 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝑁 mod 𝑀) = 0 ↔ (𝑁 / 𝑀) ∈ ℤ)) | |
14 | 8, 10, 12, 13 | syl3anc 1233 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑁 mod 𝑀) = 0 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
15 | 6, 14 | bitr4d 190 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 mod 𝑀) = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 class class class wbr 3989 (class class class)co 5853 0cc0 7774 < clt 7954 / cdiv 8589 ℕcn 8878 ℤcz 9212 ℚcq 9578 mod cmo 10278 ∥ cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-q 9579 df-rp 9611 df-fl 10226 df-mod 10279 df-dvds 11750 |
This theorem is referenced by: dvdsmod0 11755 dvdsdc 11760 moddvds 11761 summodnegmod 11784 mulmoddvds 11823 mod2eq0even 11837 odzdvds 12199 m1dvdsndvds 12202 fldivp1 12300 4sqlem10 12339 lgslem1 13695 lgsne0 13733 lgsprme0 13737 |
Copyright terms: Public domain | W3C validator |