Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdsval3 | GIF version |
Description: One nonzero integer divides another integer if and only if the remainder upon division is zero, see remark in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
dvdsval3 | ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 mod 𝑀) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 9218 | . . . 4 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
2 | nnne0 8893 | . . . 4 ⊢ (𝑀 ∈ ℕ → 𝑀 ≠ 0) | |
3 | 1, 2 | jca 304 | . . 3 ⊢ (𝑀 ∈ ℕ → (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) |
4 | dvdsval2 11739 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) | |
5 | 4 | 3expa 1198 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
6 | 3, 5 | sylan 281 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
7 | zq 9572 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℚ) | |
8 | 7 | adantl 275 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℚ) |
9 | nnq 9579 | . . . 4 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℚ) | |
10 | 9 | adantr 274 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℚ) |
11 | nngt0 8890 | . . . 4 ⊢ (𝑀 ∈ ℕ → 0 < 𝑀) | |
12 | 11 | adantr 274 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 0 < 𝑀) |
13 | modq0 10272 | . . 3 ⊢ ((𝑁 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝑁 mod 𝑀) = 0 ↔ (𝑁 / 𝑀) ∈ ℤ)) | |
14 | 8, 10, 12, 13 | syl3anc 1233 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑁 mod 𝑀) = 0 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
15 | 6, 14 | bitr4d 190 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 mod 𝑀) = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 class class class wbr 3987 (class class class)co 5850 0cc0 7761 < clt 7941 / cdiv 8576 ℕcn 8865 ℤcz 9199 ℚcq 9565 mod cmo 10265 ∥ cdvds 11736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 ax-arch 7880 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-n0 9123 df-z 9200 df-q 9566 df-rp 9598 df-fl 10213 df-mod 10266 df-dvds 11737 |
This theorem is referenced by: dvdsmod0 11742 dvdsdc 11747 moddvds 11748 summodnegmod 11771 mulmoddvds 11810 mod2eq0even 11824 odzdvds 12186 m1dvdsndvds 12189 fldivp1 12287 4sqlem10 12326 lgslem1 13616 lgsne0 13654 lgsprme0 13658 |
Copyright terms: Public domain | W3C validator |