ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsval3 GIF version

Theorem dvdsval3 11973
Description: One nonzero integer divides another integer if and only if the remainder upon division is zero, see remark in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 15-Jul-2014.)
Assertion
Ref Expression
dvdsval3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 mod 𝑀) = 0))

Proof of Theorem dvdsval3
StepHypRef Expression
1 nnz 9362 . . . 4 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
2 nnne0 9035 . . . 4 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
31, 2jca 306 . . 3 (𝑀 ∈ ℕ → (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0))
4 dvdsval2 11972 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
543expa 1205 . . 3 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
63, 5sylan 283 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
7 zq 9717 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
87adantl 277 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℚ)
9 nnq 9724 . . . 4 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
109adantr 276 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℚ)
11 nngt0 9032 . . . 4 (𝑀 ∈ ℕ → 0 < 𝑀)
1211adantr 276 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 0 < 𝑀)
13 modq0 10438 . . 3 ((𝑁 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝑁 mod 𝑀) = 0 ↔ (𝑁 / 𝑀) ∈ ℤ))
148, 10, 12, 13syl3anc 1249 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑁 mod 𝑀) = 0 ↔ (𝑁 / 𝑀) ∈ ℤ))
156, 14bitr4d 191 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 mod 𝑀) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4034  (class class class)co 5925  0cc0 7896   < clt 8078   / cdiv 8716  cn 9007  cz 9343  cq 9710   mod cmo 10431  cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-q 9711  df-rp 9746  df-fl 10377  df-mod 10432  df-dvds 11970
This theorem is referenced by:  dvdsmod0  11975  dvdsdc  11980  moddvds  11981  summodnegmod  12004  mulmoddvds  12045  mod2eq0even  12060  odzdvds  12439  m1dvdsndvds  12442  fldivp1  12542  4sqlem10  12581  lgslem1  15325  lgsne0  15363  lgsprme0  15367  lgseisenlem1  15395  2lgs  15429
  Copyright terms: Public domain W3C validator