![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elmapex | GIF version |
Description: Eliminate antecedent for mapping theorems: domain can be taken to be a set. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
Ref | Expression |
---|---|
elmapex | ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-map 6647 | . 2 ⊢ ↑𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
2 | 1 | elmpocl 6066 | 1 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 {cab 2163 Vcvv 2737 ⟶wf 5211 (class class class)co 5872 ↑𝑚 cmap 6645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-pow 4173 ax-pr 4208 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4003 df-opab 4064 df-id 4292 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-iota 5177 df-fun 5217 df-fv 5223 df-ov 5875 df-oprab 5876 df-mpo 5877 df-map 6647 |
This theorem is referenced by: elmapi 6667 elmapssres 6670 mapsspm 6679 mapss 6688 |
Copyright terms: Public domain | W3C validator |