ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmapi GIF version

Theorem elmapi 6807
Description: A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
elmapi (𝐴 ∈ (𝐵𝑚 𝐶) → 𝐴:𝐶𝐵)

Proof of Theorem elmapi
StepHypRef Expression
1 elmapex 6806 . . 3 (𝐴 ∈ (𝐵𝑚 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
2 elmapg 6798 . . 3 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ∈ (𝐵𝑚 𝐶) ↔ 𝐴:𝐶𝐵))
31, 2syl 14 . 2 (𝐴 ∈ (𝐵𝑚 𝐶) → (𝐴 ∈ (𝐵𝑚 𝐶) ↔ 𝐴:𝐶𝐵))
43ibi 176 1 (𝐴 ∈ (𝐵𝑚 𝐶) → 𝐴:𝐶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2200  Vcvv 2799  wf 5310  (class class class)co 5994  𝑚 cmap 6785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-map 6787
This theorem is referenced by:  elmapfn  6808  elmapfun  6809  elmapssres  6810  mapsspm  6819  map0b  6824  mapss  6828  mapsncnv  6832  mapen  6995  mapxpen  6997  nninff  7277  ismkvnex  7310  nninfwlpoim  7334  nninfinfwlpo  7335  finacn  7374  acnccim  7446  psrbagf  14619  psrbagfi  14622  mplsubgfilemcl  14648  plycn  15421  dvply2g  15425  bj-charfunr  16103  2omap  16290  nninfalllem1  16305  nninfall  16306  nninfsellemdc  16307  nninfsellemqall  16312  nninfomnilem  16315  isomninnlem  16329  trilpo  16342  iswomninnlem  16348  iswomni0  16350  ismkvnnlem  16351  redcwlpo  16354  nconstwlpo  16365  neapmkv  16367
  Copyright terms: Public domain W3C validator