| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elmapi | GIF version | ||
| Description: A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| elmapi | ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐴:𝐶⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapex 6806 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) | |
| 2 | elmapg 6798 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ∈ (𝐵 ↑𝑚 𝐶) ↔ 𝐴:𝐶⟶𝐵)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → (𝐴 ∈ (𝐵 ↑𝑚 𝐶) ↔ 𝐴:𝐶⟶𝐵)) |
| 4 | 3 | ibi 176 | 1 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐴:𝐶⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 Vcvv 2799 ⟶wf 5310 (class class class)co 5994 ↑𝑚 cmap 6785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-map 6787 |
| This theorem is referenced by: elmapfn 6808 elmapfun 6809 elmapssres 6810 mapsspm 6819 map0b 6824 mapss 6828 mapsncnv 6832 mapen 6995 mapxpen 6997 nninff 7277 ismkvnex 7310 nninfwlpoim 7334 nninfinfwlpo 7335 finacn 7374 acnccim 7446 psrbagf 14619 psrbagfi 14622 mplsubgfilemcl 14648 plycn 15421 dvply2g 15425 bj-charfunr 16103 2omap 16290 nninfalllem1 16305 nninfall 16306 nninfsellemdc 16307 nninfsellemqall 16312 nninfomnilem 16315 isomninnlem 16329 trilpo 16342 iswomninnlem 16348 iswomni0 16350 ismkvnnlem 16351 redcwlpo 16354 nconstwlpo 16365 neapmkv 16367 |
| Copyright terms: Public domain | W3C validator |