| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elmapi | GIF version | ||
| Description: A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| elmapi | ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐴:𝐶⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapex 6766 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) | |
| 2 | elmapg 6758 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ∈ (𝐵 ↑𝑚 𝐶) ↔ 𝐴:𝐶⟶𝐵)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → (𝐴 ∈ (𝐵 ↑𝑚 𝐶) ↔ 𝐴:𝐶⟶𝐵)) |
| 4 | 3 | ibi 176 | 1 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐴:𝐶⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2177 Vcvv 2773 ⟶wf 5273 (class class class)co 5954 ↑𝑚 cmap 6745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-map 6747 |
| This theorem is referenced by: elmapfn 6768 elmapfun 6769 elmapssres 6770 mapsspm 6779 map0b 6784 mapss 6788 mapsncnv 6792 mapen 6955 mapxpen 6957 nninff 7236 ismkvnex 7269 nninfwlpoim 7293 nninfinfwlpo 7294 finacn 7329 acnccim 7397 psrbagf 14482 psrbagfi 14485 mplsubgfilemcl 14511 plycn 15284 dvply2g 15288 bj-charfunr 15860 2omap 16047 nninfalllem1 16060 nninfall 16061 nninfsellemdc 16062 nninfsellemqall 16067 nninfomnilem 16070 isomninnlem 16084 trilpo 16097 iswomninnlem 16103 iswomni0 16105 ismkvnnlem 16106 redcwlpo 16109 nconstwlpo 16120 neapmkv 16122 |
| Copyright terms: Public domain | W3C validator |