ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmapi GIF version

Theorem elmapi 6628
Description: A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
elmapi (𝐴 ∈ (𝐵𝑚 𝐶) → 𝐴:𝐶𝐵)

Proof of Theorem elmapi
StepHypRef Expression
1 elmapex 6627 . . 3 (𝐴 ∈ (𝐵𝑚 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
2 elmapg 6619 . . 3 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ∈ (𝐵𝑚 𝐶) ↔ 𝐴:𝐶𝐵))
31, 2syl 14 . 2 (𝐴 ∈ (𝐵𝑚 𝐶) → (𝐴 ∈ (𝐵𝑚 𝐶) ↔ 𝐴:𝐶𝐵))
43ibi 175 1 (𝐴 ∈ (𝐵𝑚 𝐶) → 𝐴:𝐶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2135  Vcvv 2722  wf 5179  (class class class)co 5837  𝑚 cmap 6606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-v 2724  df-sbc 2948  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-br 3978  df-opab 4039  df-id 4266  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-fv 5191  df-ov 5840  df-oprab 5841  df-mpo 5842  df-map 6608
This theorem is referenced by:  elmapfn  6629  elmapfun  6630  elmapssres  6631  mapsspm  6640  map0b  6645  mapss  6649  mapsncnv  6653  mapen  6804  mapxpen  6806  nninff  7079  ismkvnex  7111  bj-charfunr  13544  nninfalllem1  13740  nninfall  13741  nninfsellemdc  13742  nninfsellemqall  13747  nninfomnilem  13750  isomninnlem  13761  trilpo  13774  iswomninnlem  13780  iswomni0  13782  ismkvnnlem  13783  redcwlpo  13786  nconstwlpo  13796  neapmkv  13798
  Copyright terms: Public domain W3C validator