ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmapi GIF version

Theorem elmapi 6726
Description: A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
elmapi (𝐴 ∈ (𝐵𝑚 𝐶) → 𝐴:𝐶𝐵)

Proof of Theorem elmapi
StepHypRef Expression
1 elmapex 6725 . . 3 (𝐴 ∈ (𝐵𝑚 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
2 elmapg 6717 . . 3 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ∈ (𝐵𝑚 𝐶) ↔ 𝐴:𝐶𝐵))
31, 2syl 14 . 2 (𝐴 ∈ (𝐵𝑚 𝐶) → (𝐴 ∈ (𝐵𝑚 𝐶) ↔ 𝐴:𝐶𝐵))
43ibi 176 1 (𝐴 ∈ (𝐵𝑚 𝐶) → 𝐴:𝐶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  Vcvv 2760  wf 5251  (class class class)co 5919  𝑚 cmap 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-map 6706
This theorem is referenced by:  elmapfn  6727  elmapfun  6728  elmapssres  6729  mapsspm  6738  map0b  6743  mapss  6747  mapsncnv  6751  mapen  6904  mapxpen  6906  nninff  7183  ismkvnex  7216  nninfwlpoim  7239  psrbagf  14167  plycn  14940  bj-charfunr  15372  nninfalllem1  15568  nninfall  15569  nninfsellemdc  15570  nninfsellemqall  15575  nninfomnilem  15578  isomninnlem  15590  trilpo  15603  iswomninnlem  15609  iswomni0  15611  ismkvnnlem  15612  redcwlpo  15615  nconstwlpo  15626  neapmkv  15628
  Copyright terms: Public domain W3C validator