| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elmapi | GIF version | ||
| Description: A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| elmapi | ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐴:𝐶⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapex 6824 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) | |
| 2 | elmapg 6816 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ∈ (𝐵 ↑𝑚 𝐶) ↔ 𝐴:𝐶⟶𝐵)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → (𝐴 ∈ (𝐵 ↑𝑚 𝐶) ↔ 𝐴:𝐶⟶𝐵)) |
| 4 | 3 | ibi 176 | 1 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐴:𝐶⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 Vcvv 2799 ⟶wf 5314 (class class class)co 6007 ↑𝑚 cmap 6803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-map 6805 |
| This theorem is referenced by: elmapfn 6826 elmapfun 6827 elmapssres 6828 mapsspm 6837 map0b 6842 mapss 6846 mapsncnv 6850 mapen 7015 mapxpen 7017 nninff 7297 ismkvnex 7330 nninfwlpoim 7354 nninfinfwlpo 7355 finacn 7394 acnccim 7466 psrbagf 14642 psrbagfi 14645 mplsubgfilemcl 14671 plycn 15444 dvply2g 15448 bj-charfunr 16197 2omap 16388 nninfalllem1 16404 nninfall 16405 nninfsellemdc 16406 nninfsellemqall 16411 nninfomnilem 16414 isomninnlem 16428 trilpo 16441 iswomninnlem 16447 iswomni0 16449 ismkvnnlem 16450 redcwlpo 16453 nconstwlpo 16464 neapmkv 16466 |
| Copyright terms: Public domain | W3C validator |