ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmapi GIF version

Theorem elmapi 6427
Description: A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
elmapi (𝐴 ∈ (𝐵𝑚 𝐶) → 𝐴:𝐶𝐵)

Proof of Theorem elmapi
StepHypRef Expression
1 elmapex 6426 . . 3 (𝐴 ∈ (𝐵𝑚 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
2 elmapg 6418 . . 3 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ∈ (𝐵𝑚 𝐶) ↔ 𝐴:𝐶𝐵))
31, 2syl 14 . 2 (𝐴 ∈ (𝐵𝑚 𝐶) → (𝐴 ∈ (𝐵𝑚 𝐶) ↔ 𝐴:𝐶𝐵))
43ibi 174 1 (𝐴 ∈ (𝐵𝑚 𝐶) → 𝐴:𝐶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1438  Vcvv 2619  wf 5011  (class class class)co 5652  𝑚 cmap 6405
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-map 6407
This theorem is referenced by:  elmapfn  6428  elmapfun  6429  elmapssres  6430  mapsspm  6439  map0b  6444  mapss  6448  mapsncnv  6452  mapen  6562  mapxpen  6564  nninff  11894  nninfalllem1  11899  nninfall  11900  nninfsellemdc  11902  nninfsellemqall  11907  nninfomnilem  11910
  Copyright terms: Public domain W3C validator