ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmapssres GIF version

Theorem elmapssres 6519
Description: A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
elmapssres ((𝐴 ∈ (𝐵𝑚 𝐶) ∧ 𝐷𝐶) → (𝐴𝐷) ∈ (𝐵𝑚 𝐷))

Proof of Theorem elmapssres
StepHypRef Expression
1 elmapi 6516 . . 3 (𝐴 ∈ (𝐵𝑚 𝐶) → 𝐴:𝐶𝐵)
2 fssres 5254 . . 3 ((𝐴:𝐶𝐵𝐷𝐶) → (𝐴𝐷):𝐷𝐵)
31, 2sylan 279 . 2 ((𝐴 ∈ (𝐵𝑚 𝐶) ∧ 𝐷𝐶) → (𝐴𝐷):𝐷𝐵)
4 elmapex 6515 . . . . 5 (𝐴 ∈ (𝐵𝑚 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
54simpld 111 . . . 4 (𝐴 ∈ (𝐵𝑚 𝐶) → 𝐵 ∈ V)
65adantr 272 . . 3 ((𝐴 ∈ (𝐵𝑚 𝐶) ∧ 𝐷𝐶) → 𝐵 ∈ V)
74simprd 113 . . . 4 (𝐴 ∈ (𝐵𝑚 𝐶) → 𝐶 ∈ V)
8 ssexg 4025 . . . . 5 ((𝐷𝐶𝐶 ∈ V) → 𝐷 ∈ V)
98ancoms 266 . . . 4 ((𝐶 ∈ V ∧ 𝐷𝐶) → 𝐷 ∈ V)
107, 9sylan 279 . . 3 ((𝐴 ∈ (𝐵𝑚 𝐶) ∧ 𝐷𝐶) → 𝐷 ∈ V)
116, 10elmapd 6508 . 2 ((𝐴 ∈ (𝐵𝑚 𝐶) ∧ 𝐷𝐶) → ((𝐴𝐷) ∈ (𝐵𝑚 𝐷) ↔ (𝐴𝐷):𝐷𝐵))
123, 11mpbird 166 1 ((𝐴 ∈ (𝐵𝑚 𝐶) ∧ 𝐷𝐶) → (𝐴𝐷) ∈ (𝐵𝑚 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1461  Vcvv 2655  wss 3035  cres 4499  wf 5075  (class class class)co 5726  𝑚 cmap 6494
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-fv 5087  df-ov 5729  df-oprab 5730  df-mpo 5731  df-map 6496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator