![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzpr | GIF version |
Description: A finite interval of integers with two elements. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
fzpr | ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzid 9190 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
2 | elfzp1 9693 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘𝑀) → (𝑚 ∈ (𝑀...(𝑀 + 1)) ↔ (𝑚 ∈ (𝑀...𝑀) ∨ 𝑚 = (𝑀 + 1)))) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑚 ∈ (𝑀...(𝑀 + 1)) ↔ (𝑚 ∈ (𝑀...𝑀) ∨ 𝑚 = (𝑀 + 1)))) |
4 | fzsn 9687 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | |
5 | 4 | eleq2d 2169 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑚 ∈ (𝑀...𝑀) ↔ 𝑚 ∈ {𝑀})) |
6 | velsn 3491 | . . . . . 6 ⊢ (𝑚 ∈ {𝑀} ↔ 𝑚 = 𝑀) | |
7 | 5, 6 | syl6bb 195 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑚 ∈ (𝑀...𝑀) ↔ 𝑚 = 𝑀)) |
8 | 7 | orbi1d 746 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑚 ∈ (𝑀...𝑀) ∨ 𝑚 = (𝑀 + 1)) ↔ (𝑚 = 𝑀 ∨ 𝑚 = (𝑀 + 1)))) |
9 | 3, 8 | bitrd 187 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑚 ∈ (𝑀...(𝑀 + 1)) ↔ (𝑚 = 𝑀 ∨ 𝑚 = (𝑀 + 1)))) |
10 | vex 2644 | . . . 4 ⊢ 𝑚 ∈ V | |
11 | 10 | elpr 3495 | . . 3 ⊢ (𝑚 ∈ {𝑀, (𝑀 + 1)} ↔ (𝑚 = 𝑀 ∨ 𝑚 = (𝑀 + 1))) |
12 | 9, 11 | syl6bbr 197 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑚 ∈ (𝑀...(𝑀 + 1)) ↔ 𝑚 ∈ {𝑀, (𝑀 + 1)})) |
13 | 12 | eqrdv 2098 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 670 = wceq 1299 ∈ wcel 1448 {csn 3474 {cpr 3475 ‘cfv 5059 (class class class)co 5706 1c1 7501 + caddc 7503 ℤcz 8906 ℤ≥cuz 9176 ...cfz 9631 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-addcom 7595 ax-addass 7597 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-0id 7603 ax-rnegex 7604 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-inn 8579 df-n0 8830 df-z 8907 df-uz 9177 df-fz 9632 |
This theorem is referenced by: fztp 9699 fzprval 9703 fzo0to2pr 9836 fzo0to42pr 9838 |
Copyright terms: Public domain | W3C validator |