Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eltop2 | GIF version |
Description: Membership in a topology. (Contributed by NM, 19-Jul-2006.) |
Ref | Expression |
---|---|
eltop2 | ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgtop 12708 | . . 3 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
2 | 1 | eleq2d 2236 | . 2 ⊢ (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ 𝐴 ∈ 𝐽)) |
3 | eltg2b 12694 | . 2 ⊢ (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) | |
4 | 2, 3 | bitr3d 189 | 1 ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 ⊆ wss 3116 ‘cfv 5188 topGenctg 12571 Topctop 12635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-topgen 12577 df-top 12636 |
This theorem is referenced by: cncnp 12870 |
Copyright terms: Public domain | W3C validator |