ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftval GIF version

Theorem qliftval 6675
Description: The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋 ∈ V)
qliftval.4 (𝑥 = 𝐶𝐴 = 𝐵)
qliftval.6 (𝜑 → Fun 𝐹)
Assertion
Ref Expression
qliftval ((𝜑𝐶𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem qliftval
StepHypRef Expression
1 qlift.1 . 2 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 qlift.2 . . 3 ((𝜑𝑥𝑋) → 𝐴𝑌)
3 qlift.3 . . 3 (𝜑𝑅 Er 𝑋)
4 qlift.4 . . 3 (𝜑𝑋 ∈ V)
51, 2, 3, 4qliftlem 6667 . 2 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
6 eceq1 6622 . 2 (𝑥 = 𝐶 → [𝑥]𝑅 = [𝐶]𝑅)
7 qliftval.4 . 2 (𝑥 = 𝐶𝐴 = 𝐵)
8 qliftval.6 . 2 (𝜑 → Fun 𝐹)
91, 5, 2, 6, 7, 8fliftval 5843 1 ((𝜑𝐶𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cop 3621  cmpt 4090  ran crn 4660  Fun wfun 5248  cfv 5254   Er wer 6584  [cec 6585   / cqs 6586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fv 5262  df-er 6587  df-ec 6589  df-qs 6593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator