ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftval GIF version

Theorem qliftval 6394
Description: The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋 ∈ V)
qliftval.4 (𝑥 = 𝐶𝐴 = 𝐵)
qliftval.6 (𝜑 → Fun 𝐹)
Assertion
Ref Expression
qliftval ((𝜑𝐶𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem qliftval
StepHypRef Expression
1 qlift.1 . 2 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 qlift.2 . . 3 ((𝜑𝑥𝑋) → 𝐴𝑌)
3 qlift.3 . . 3 (𝜑𝑅 Er 𝑋)
4 qlift.4 . . 3 (𝜑𝑋 ∈ V)
51, 2, 3, 4qliftlem 6386 . 2 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
6 eceq1 6343 . 2 (𝑥 = 𝐶 → [𝑥]𝑅 = [𝐶]𝑅)
7 qliftval.4 . 2 (𝑥 = 𝐶𝐴 = 𝐵)
8 qliftval.6 . 2 (𝜑 → Fun 𝐹)
91, 5, 2, 6, 7, 8fliftval 5595 1 ((𝜑𝐶𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1290  wcel 1439  Vcvv 2622  cop 3455  cmpt 3907  ran crn 4455  Fun wfun 5024  cfv 5030   Er wer 6305  [cec 6306   / cqs 6307
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2624  df-sbc 2844  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-mpt 3909  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fv 5038  df-er 6308  df-ec 6310  df-qs 6314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator