ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftval GIF version

Theorem qliftval 6639
Description: The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋 ∈ V)
qliftval.4 (𝑥 = 𝐶𝐴 = 𝐵)
qliftval.6 (𝜑 → Fun 𝐹)
Assertion
Ref Expression
qliftval ((𝜑𝐶𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem qliftval
StepHypRef Expression
1 qlift.1 . 2 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 qlift.2 . . 3 ((𝜑𝑥𝑋) → 𝐴𝑌)
3 qlift.3 . . 3 (𝜑𝑅 Er 𝑋)
4 qlift.4 . . 3 (𝜑𝑋 ∈ V)
51, 2, 3, 4qliftlem 6631 . 2 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
6 eceq1 6588 . 2 (𝑥 = 𝐶 → [𝑥]𝑅 = [𝐶]𝑅)
7 qliftval.4 . 2 (𝑥 = 𝐶𝐴 = 𝐵)
8 qliftval.6 . 2 (𝜑 → Fun 𝐹)
91, 5, 2, 6, 7, 8fliftval 5817 1 ((𝜑𝐶𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  Vcvv 2752  cop 3610  cmpt 4079  ran crn 4642  Fun wfun 5225  cfv 5231   Er wer 6550  [cec 6551   / cqs 6552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fv 5239  df-er 6553  df-ec 6555  df-qs 6559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator