ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfz1 GIF version

Theorem hashfz1 10696
Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashfz1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)

Proof of Theorem hashfz1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0zd 9203 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ ℤ)
2 eqid 2165 . . . . . 6 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
31, 2frec2uzf1od 10341 . . . . 5 (𝑁 ∈ ℕ0 → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0))
4 f1ocnv 5445 . . . . 5 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)–1-1-onto→ω)
5 f1of 5432 . . . . 5 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)–1-1-onto→ω → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)⟶ω)
63, 4, 53syl 17 . . . 4 (𝑁 ∈ ℕ0frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)⟶ω)
7 elnn0uz 9503 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
87biimpi 119 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
96, 8ffvelrnd 5621 . . 3 (𝑁 ∈ ℕ0 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω)
102frecfzennn 10361 . . . 4 (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
1110ensymd 6749 . . 3 (𝑁 ∈ ℕ0 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁))
12 hashennn 10693 . . 3 (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω ∧ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁)) → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)))
139, 11, 12syl2anc 409 . 2 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)))
14 oveq1 5849 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
1514cbvmptv 4078 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1))
16 freceq1 6360 . . . . . 6 ((𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1)) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0))
1715, 16ax-mp 5 . . . . 5 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)
1817fveq1i 5487 . . . 4 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
19 f1ocnvfv2 5746 . . . 4 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0) ∧ 𝑁 ∈ (ℤ‘0)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁)
2018, 19eqtr3id 2213 . . 3 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0) ∧ 𝑁 ∈ (ℤ‘0)) → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁)
213, 8, 20syl2anc 409 . 2 (𝑁 ∈ ℕ0 → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁)
2213, 21eqtrd 2198 1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136   class class class wbr 3982  cmpt 4043  ωcom 4567  ccnv 4603  wf 5184  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  freccfrec 6358  cen 6704  0cc0 7753  1c1 7754   + caddc 7756  0cn0 9114  cz 9191  cuz 9466  ...cfz 9944  chash 10688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-recs 6273  df-frec 6359  df-1o 6384  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-ihash 10689
This theorem is referenced by:  fz1eqb  10704  isfinite4im  10706  fihasheq0  10707  hashsng  10711  fseq1hash  10714  hashfz  10734  nnf1o  11317  summodclem2a  11322  summodc  11324  zsumdc  11325  fsum3  11328  mertenslemi1  11476  prodmodclem3  11516  prodmodclem2a  11517  zproddc  11520  fprodseq  11524  phicl2  12146  phibnd  12149  hashdvds  12153  phiprmpw  12154  eulerth  12165  pcfac  12280
  Copyright terms: Public domain W3C validator