![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hashfz1 | GIF version |
Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
hashfz1 | ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0zd 9329 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ ℤ) | |
2 | eqid 2193 | . . . . . 6 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
3 | 1, 2 | frec2uzf1od 10477 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0)) |
4 | f1ocnv 5513 | . . . . 5 ⊢ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0) → ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)–1-1-onto→ω) | |
5 | f1of 5500 | . . . . 5 ⊢ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)–1-1-onto→ω → ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)⟶ω) | |
6 | 3, 4, 5 | 3syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)⟶ω) |
7 | elnn0uz 9630 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
8 | 7 | biimpi 120 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (ℤ≥‘0)) |
9 | 6, 8 | ffvelcdmd 5694 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω) |
10 | 2 | frecfzennn 10497 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) |
11 | 10 | ensymd 6837 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁)) |
12 | hashennn 10851 | . . 3 ⊢ (((◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω ∧ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁)) → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))) | |
13 | 9, 11, 12 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))) |
14 | oveq1 5925 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1)) | |
15 | 14 | cbvmptv 4125 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1)) |
16 | freceq1 6445 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1)) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)) | |
17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0) |
18 | 17 | fveq1i 5555 | . . . 4 ⊢ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) |
19 | f1ocnvfv2 5821 | . . . 4 ⊢ ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘0)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁) | |
20 | 18, 19 | eqtr3id 2240 | . . 3 ⊢ ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘0)) → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁) |
21 | 3, 8, 20 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ0 → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁) |
22 | 13, 21 | eqtrd 2226 | 1 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ↦ cmpt 4090 ωcom 4622 ◡ccnv 4658 ⟶wf 5250 –1-1-onto→wf1o 5253 ‘cfv 5254 (class class class)co 5918 freccfrec 6443 ≈ cen 6792 0cc0 7872 1c1 7873 + caddc 7875 ℕ0cn0 9240 ℤcz 9317 ℤ≥cuz 9592 ...cfz 10074 ♯chash 10846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-recs 6358 df-frec 6444 df-1o 6469 df-er 6587 df-en 6795 df-dom 6796 df-fin 6797 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-fz 10075 df-ihash 10847 |
This theorem is referenced by: fz1eqb 10861 isfinite4im 10863 fihasheq0 10864 hashsng 10869 fseq1hash 10872 hashfz 10892 nnf1o 11519 summodclem2a 11524 summodc 11526 zsumdc 11527 fsum3 11530 mertenslemi1 11678 prodmodclem3 11718 prodmodclem2a 11719 zproddc 11722 fprodseq 11726 phicl2 12352 phibnd 12355 hashdvds 12359 phiprmpw 12360 eulerth 12371 pcfac 12488 4sqlem11 12539 gausslemma2dlem6 15183 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |