ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfz1 GIF version

Theorem hashfz1 10755
Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashfz1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)

Proof of Theorem hashfz1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0zd 9260 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ ℤ)
2 eqid 2177 . . . . . 6 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
31, 2frec2uzf1od 10400 . . . . 5 (𝑁 ∈ ℕ0 → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0))
4 f1ocnv 5472 . . . . 5 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)–1-1-onto→ω)
5 f1of 5459 . . . . 5 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)–1-1-onto→ω → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)⟶ω)
63, 4, 53syl 17 . . . 4 (𝑁 ∈ ℕ0frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)⟶ω)
7 elnn0uz 9560 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
87biimpi 120 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
96, 8ffvelcdmd 5650 . . 3 (𝑁 ∈ ℕ0 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω)
102frecfzennn 10420 . . . 4 (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
1110ensymd 6779 . . 3 (𝑁 ∈ ℕ0 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁))
12 hashennn 10752 . . 3 (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω ∧ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁)) → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)))
139, 11, 12syl2anc 411 . 2 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)))
14 oveq1 5878 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
1514cbvmptv 4098 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1))
16 freceq1 6389 . . . . . 6 ((𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1)) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0))
1715, 16ax-mp 5 . . . . 5 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)
1817fveq1i 5514 . . . 4 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
19 f1ocnvfv2 5775 . . . 4 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0) ∧ 𝑁 ∈ (ℤ‘0)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁)
2018, 19eqtr3id 2224 . . 3 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0) ∧ 𝑁 ∈ (ℤ‘0)) → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁)
213, 8, 20syl2anc 411 . 2 (𝑁 ∈ ℕ0 → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁)
2213, 21eqtrd 2210 1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148   class class class wbr 4002  cmpt 4063  ωcom 4588  ccnv 4624  wf 5210  1-1-ontowf1o 5213  cfv 5214  (class class class)co 5871  freccfrec 6387  cen 6734  0cc0 7807  1c1 7808   + caddc 7810  0cn0 9171  cz 9248  cuz 9523  ...cfz 10003  chash 10747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-iinf 4586  ax-cnex 7898  ax-resscn 7899  ax-1cn 7900  ax-1re 7901  ax-icn 7902  ax-addcl 7903  ax-addrcl 7904  ax-mulcl 7905  ax-addcom 7907  ax-addass 7909  ax-distr 7911  ax-i2m1 7912  ax-0lt1 7913  ax-0id 7915  ax-rnegex 7916  ax-cnre 7918  ax-pre-ltirr 7919  ax-pre-ltwlin 7920  ax-pre-lttrn 7921  ax-pre-apti 7922  ax-pre-ltadd 7923
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-tr 4101  df-id 4292  df-iord 4365  df-on 4367  df-ilim 4368  df-suc 4370  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5176  df-fun 5216  df-fn 5217  df-f 5218  df-f1 5219  df-fo 5220  df-f1o 5221  df-fv 5222  df-riota 5827  df-ov 5874  df-oprab 5875  df-mpo 5876  df-recs 6302  df-frec 6388  df-1o 6413  df-er 6531  df-en 6737  df-dom 6738  df-fin 6739  df-pnf 7989  df-mnf 7990  df-xr 7991  df-ltxr 7992  df-le 7993  df-sub 8125  df-neg 8126  df-inn 8915  df-n0 9172  df-z 9249  df-uz 9524  df-fz 10004  df-ihash 10748
This theorem is referenced by:  fz1eqb  10762  isfinite4im  10764  fihasheq0  10765  hashsng  10770  fseq1hash  10773  hashfz  10793  nnf1o  11376  summodclem2a  11381  summodc  11383  zsumdc  11384  fsum3  11387  mertenslemi1  11535  prodmodclem3  11575  prodmodclem2a  11576  zproddc  11579  fprodseq  11583  phicl2  12205  phibnd  12208  hashdvds  12212  phiprmpw  12213  eulerth  12224  pcfac  12339
  Copyright terms: Public domain W3C validator