| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashfz1 | GIF version | ||
| Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| hashfz1 | ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 9419 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ ℤ) | |
| 2 | eqid 2207 | . . . . . 6 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 3 | 1, 2 | frec2uzf1od 10588 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0)) |
| 4 | f1ocnv 5557 | . . . . 5 ⊢ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0) → ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)–1-1-onto→ω) | |
| 5 | f1of 5544 | . . . . 5 ⊢ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)–1-1-onto→ω → ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)⟶ω) | |
| 6 | 3, 4, 5 | 3syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)⟶ω) |
| 7 | elnn0uz 9721 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
| 8 | 7 | biimpi 120 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (ℤ≥‘0)) |
| 9 | 6, 8 | ffvelcdmd 5739 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω) |
| 10 | 2 | frecfzennn 10608 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) |
| 11 | 10 | ensymd 6898 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁)) |
| 12 | hashennn 10962 | . . 3 ⊢ (((◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω ∧ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁)) → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))) | |
| 13 | 9, 11, 12 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))) |
| 14 | oveq1 5974 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1)) | |
| 15 | 14 | cbvmptv 4156 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1)) |
| 16 | freceq1 6501 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1)) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0) |
| 18 | 17 | fveq1i 5600 | . . . 4 ⊢ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) |
| 19 | f1ocnvfv2 5870 | . . . 4 ⊢ ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘0)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁) | |
| 20 | 18, 19 | eqtr3id 2254 | . . 3 ⊢ ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘0)) → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁) |
| 21 | 3, 8, 20 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ0 → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁) |
| 22 | 13, 21 | eqtrd 2240 | 1 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 class class class wbr 4059 ↦ cmpt 4121 ωcom 4656 ◡ccnv 4692 ⟶wf 5286 –1-1-onto→wf1o 5289 ‘cfv 5290 (class class class)co 5967 freccfrec 6499 ≈ cen 6848 0cc0 7960 1c1 7961 + caddc 7963 ℕ0cn0 9330 ℤcz 9407 ℤ≥cuz 9683 ...cfz 10165 ♯chash 10957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-recs 6414 df-frec 6500 df-1o 6525 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-ihash 10958 |
| This theorem is referenced by: fz1eqb 10972 isfinite4im 10974 fihasheq0 10975 hashsng 10980 fseq1hash 10983 hashfz 11003 nnf1o 11802 summodclem2a 11807 summodc 11809 zsumdc 11810 fsum3 11813 mertenslemi1 11961 prodmodclem3 12001 prodmodclem2a 12002 zproddc 12005 fprodseq 12009 phicl2 12651 phibnd 12654 hashdvds 12658 phiprmpw 12659 eulerth 12670 pcfac 12788 4sqlem11 12839 gausslemma2dlem6 15659 lgsquadlem1 15669 lgsquadlem2 15670 lgsquadlem3 15671 |
| Copyright terms: Public domain | W3C validator |