| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashfz1 | GIF version | ||
| Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| hashfz1 | ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 9357 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ ℤ) | |
| 2 | eqid 2196 | . . . . . 6 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 3 | 1, 2 | frec2uzf1od 10517 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0)) |
| 4 | f1ocnv 5520 | . . . . 5 ⊢ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0) → ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)–1-1-onto→ω) | |
| 5 | f1of 5507 | . . . . 5 ⊢ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)–1-1-onto→ω → ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)⟶ω) | |
| 6 | 3, 4, 5 | 3syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)⟶ω) |
| 7 | elnn0uz 9658 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
| 8 | 7 | biimpi 120 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (ℤ≥‘0)) |
| 9 | 6, 8 | ffvelcdmd 5701 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω) |
| 10 | 2 | frecfzennn 10537 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) |
| 11 | 10 | ensymd 6851 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁)) |
| 12 | hashennn 10891 | . . 3 ⊢ (((◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω ∧ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁)) → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))) | |
| 13 | 9, 11, 12 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))) |
| 14 | oveq1 5932 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1)) | |
| 15 | 14 | cbvmptv 4130 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1)) |
| 16 | freceq1 6459 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1)) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0) |
| 18 | 17 | fveq1i 5562 | . . . 4 ⊢ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) |
| 19 | f1ocnvfv2 5828 | . . . 4 ⊢ ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘0)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁) | |
| 20 | 18, 19 | eqtr3id 2243 | . . 3 ⊢ ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘0)) → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁) |
| 21 | 3, 8, 20 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ0 → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁) |
| 22 | 13, 21 | eqtrd 2229 | 1 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ↦ cmpt 4095 ωcom 4627 ◡ccnv 4663 ⟶wf 5255 –1-1-onto→wf1o 5258 ‘cfv 5259 (class class class)co 5925 freccfrec 6457 ≈ cen 6806 0cc0 7898 1c1 7899 + caddc 7901 ℕ0cn0 9268 ℤcz 9345 ℤ≥cuz 9620 ...cfz 10102 ♯chash 10886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-recs 6372 df-frec 6458 df-1o 6483 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-n0 9269 df-z 9346 df-uz 9621 df-fz 10103 df-ihash 10887 |
| This theorem is referenced by: fz1eqb 10901 isfinite4im 10903 fihasheq0 10904 hashsng 10909 fseq1hash 10912 hashfz 10932 nnf1o 11560 summodclem2a 11565 summodc 11567 zsumdc 11568 fsum3 11571 mertenslemi1 11719 prodmodclem3 11759 prodmodclem2a 11760 zproddc 11763 fprodseq 11767 phicl2 12409 phibnd 12412 hashdvds 12416 phiprmpw 12417 eulerth 12428 pcfac 12546 4sqlem11 12597 gausslemma2dlem6 15416 lgsquadlem1 15426 lgsquadlem2 15427 lgsquadlem3 15428 |
| Copyright terms: Public domain | W3C validator |