| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashfz1 | GIF version | ||
| Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| hashfz1 | ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 9458 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ ℤ) | |
| 2 | eqid 2229 | . . . . . 6 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 3 | 1, 2 | frec2uzf1od 10628 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0)) |
| 4 | f1ocnv 5585 | . . . . 5 ⊢ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0) → ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)–1-1-onto→ω) | |
| 5 | f1of 5572 | . . . . 5 ⊢ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)–1-1-onto→ω → ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)⟶ω) | |
| 6 | 3, 4, 5 | 3syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)⟶ω) |
| 7 | elnn0uz 9760 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
| 8 | 7 | biimpi 120 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (ℤ≥‘0)) |
| 9 | 6, 8 | ffvelcdmd 5771 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω) |
| 10 | 2 | frecfzennn 10648 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) |
| 11 | 10 | ensymd 6935 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁)) |
| 12 | hashennn 11002 | . . 3 ⊢ (((◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω ∧ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁)) → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))) | |
| 13 | 9, 11, 12 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))) |
| 14 | oveq1 6008 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1)) | |
| 15 | 14 | cbvmptv 4180 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1)) |
| 16 | freceq1 6538 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1)) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0) |
| 18 | 17 | fveq1i 5628 | . . . 4 ⊢ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) |
| 19 | f1ocnvfv2 5902 | . . . 4 ⊢ ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘0)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁) | |
| 20 | 18, 19 | eqtr3id 2276 | . . 3 ⊢ ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘0)) → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁) |
| 21 | 3, 8, 20 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ0 → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁) |
| 22 | 13, 21 | eqtrd 2262 | 1 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 ↦ cmpt 4145 ωcom 4682 ◡ccnv 4718 ⟶wf 5314 –1-1-onto→wf1o 5317 ‘cfv 5318 (class class class)co 6001 freccfrec 6536 ≈ cen 6885 0cc0 7999 1c1 8000 + caddc 8002 ℕ0cn0 9369 ℤcz 9446 ℤ≥cuz 9722 ...cfz 10204 ♯chash 10997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-recs 6451 df-frec 6537 df-1o 6562 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 df-ihash 10998 |
| This theorem is referenced by: fz1eqb 11012 isfinite4im 11014 fihasheq0 11015 hashsng 11020 fseq1hash 11023 hashfz 11043 nnf1o 11887 summodclem2a 11892 summodc 11894 zsumdc 11895 fsum3 11898 mertenslemi1 12046 prodmodclem3 12086 prodmodclem2a 12087 zproddc 12090 fprodseq 12094 phicl2 12736 phibnd 12739 hashdvds 12743 phiprmpw 12744 eulerth 12755 pcfac 12873 4sqlem11 12924 gausslemma2dlem6 15746 lgsquadlem1 15756 lgsquadlem2 15757 lgsquadlem3 15758 |
| Copyright terms: Public domain | W3C validator |