| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashfz1 | GIF version | ||
| Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| hashfz1 | ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 9384 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ ℤ) | |
| 2 | eqid 2205 | . . . . . 6 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 3 | 1, 2 | frec2uzf1od 10551 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0)) |
| 4 | f1ocnv 5535 | . . . . 5 ⊢ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0) → ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)–1-1-onto→ω) | |
| 5 | f1of 5522 | . . . . 5 ⊢ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)–1-1-onto→ω → ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)⟶ω) | |
| 6 | 3, 4, 5 | 3syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ≥‘0)⟶ω) |
| 7 | elnn0uz 9686 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
| 8 | 7 | biimpi 120 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (ℤ≥‘0)) |
| 9 | 6, 8 | ffvelcdmd 5716 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω) |
| 10 | 2 | frecfzennn 10571 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) |
| 11 | 10 | ensymd 6875 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁)) |
| 12 | hashennn 10925 | . . 3 ⊢ (((◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω ∧ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁)) → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))) | |
| 13 | 9, 11, 12 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))) |
| 14 | oveq1 5951 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1)) | |
| 15 | 14 | cbvmptv 4140 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1)) |
| 16 | freceq1 6478 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1)) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0) |
| 18 | 17 | fveq1i 5577 | . . . 4 ⊢ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) |
| 19 | f1ocnvfv2 5847 | . . . 4 ⊢ ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘0)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁) | |
| 20 | 18, 19 | eqtr3id 2252 | . . 3 ⊢ ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘0)) → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁) |
| 21 | 3, 8, 20 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ0 → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁) |
| 22 | 13, 21 | eqtrd 2238 | 1 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 class class class wbr 4044 ↦ cmpt 4105 ωcom 4638 ◡ccnv 4674 ⟶wf 5267 –1-1-onto→wf1o 5270 ‘cfv 5271 (class class class)co 5944 freccfrec 6476 ≈ cen 6825 0cc0 7925 1c1 7926 + caddc 7928 ℕ0cn0 9295 ℤcz 9372 ℤ≥cuz 9648 ...cfz 10130 ♯chash 10920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-recs 6391 df-frec 6477 df-1o 6502 df-er 6620 df-en 6828 df-dom 6829 df-fin 6830 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 df-ihash 10921 |
| This theorem is referenced by: fz1eqb 10935 isfinite4im 10937 fihasheq0 10938 hashsng 10943 fseq1hash 10946 hashfz 10966 nnf1o 11687 summodclem2a 11692 summodc 11694 zsumdc 11695 fsum3 11698 mertenslemi1 11846 prodmodclem3 11886 prodmodclem2a 11887 zproddc 11890 fprodseq 11894 phicl2 12536 phibnd 12539 hashdvds 12543 phiprmpw 12544 eulerth 12555 pcfac 12673 4sqlem11 12724 gausslemma2dlem6 15544 lgsquadlem1 15554 lgsquadlem2 15555 lgsquadlem3 15556 |
| Copyright terms: Public domain | W3C validator |