ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfz1 GIF version

Theorem hashfz1 10416
Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashfz1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)

Proof of Theorem hashfz1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0zd 8964 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ ℤ)
2 eqid 2113 . . . . . 6 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
31, 2frec2uzf1od 10066 . . . . 5 (𝑁 ∈ ℕ0 → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0))
4 f1ocnv 5334 . . . . 5 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)–1-1-onto→ω)
5 f1of 5321 . . . . 5 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)–1-1-onto→ω → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)⟶ω)
63, 4, 53syl 17 . . . 4 (𝑁 ∈ ℕ0frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)⟶ω)
7 elnn0uz 9259 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
87biimpi 119 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
96, 8ffvelrnd 5508 . . 3 (𝑁 ∈ ℕ0 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω)
102frecfzennn 10086 . . . 4 (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
1110ensymd 6629 . . 3 (𝑁 ∈ ℕ0 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁))
12 hashennn 10413 . . 3 (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω ∧ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁)) → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)))
139, 11, 12syl2anc 406 . 2 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)))
14 oveq1 5733 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
1514cbvmptv 3982 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1))
16 freceq1 6241 . . . . . 6 ((𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1)) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0))
1715, 16ax-mp 7 . . . . 5 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)
1817fveq1i 5374 . . . 4 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
19 f1ocnvfv2 5631 . . . 4 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0) ∧ 𝑁 ∈ (ℤ‘0)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁)
2018, 19syl5eqr 2159 . . 3 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0) ∧ 𝑁 ∈ (ℤ‘0)) → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁)
213, 8, 20syl2anc 406 . 2 (𝑁 ∈ ℕ0 → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁)
2213, 21eqtrd 2145 1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1312  wcel 1461   class class class wbr 3893  cmpt 3947  ωcom 4462  ccnv 4496  wf 5075  1-1-ontowf1o 5078  cfv 5079  (class class class)co 5726  freccfrec 6239  cen 6584  0cc0 7541  1c1 7542   + caddc 7544  0cn0 8875  cz 8952  cuz 9222  ...cfz 9677  chash 10408
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-addcom 7639  ax-addass 7641  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-0id 7647  ax-rnegex 7648  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-recs 6154  df-frec 6240  df-1o 6265  df-er 6381  df-en 6587  df-dom 6588  df-fin 6589  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-inn 8625  df-n0 8876  df-z 8953  df-uz 9223  df-fz 9678  df-ihash 10409
This theorem is referenced by:  fz1eqb  10424  isfinite4im  10426  fihasheq0  10427  hashsng  10431  fseq1hash  10434  hashfz  10454  isummolemnm  11034  summodclem2a  11036  summodc  11038  zsumdc  11039  fsum3  11042  mertenslemi1  11190  phicl2  11729  phibnd  11732  hashdvds  11736  phiprmpw  11737
  Copyright terms: Public domain W3C validator