ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfz1 GIF version

Theorem hashfz1 10156
Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashfz1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)

Proof of Theorem hashfz1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0zd 8732 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ ℤ)
2 eqid 2088 . . . . . 6 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
31, 2frec2uzf1od 9778 . . . . 5 (𝑁 ∈ ℕ0 → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0))
4 f1ocnv 5250 . . . . 5 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)–1-1-onto→ω)
5 f1of 5237 . . . . 5 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)–1-1-onto→ω → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)⟶ω)
63, 4, 53syl 17 . . . 4 (𝑁 ∈ ℕ0frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)⟶ω)
7 elnn0uz 9025 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
87biimpi 118 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
96, 8ffvelrnd 5419 . . 3 (𝑁 ∈ ℕ0 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω)
102frecfzennn 9798 . . . 4 (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
1110ensymd 6480 . . 3 (𝑁 ∈ ℕ0 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁))
12 hashennn 10153 . . 3 (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω ∧ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁)) → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)))
139, 11, 12syl2anc 403 . 2 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)))
14 oveq1 5641 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
1514cbvmptv 3926 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1))
16 freceq1 6139 . . . . . 6 ((𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1)) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0))
1715, 16ax-mp 7 . . . . 5 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)
1817fveq1i 5290 . . . 4 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
19 f1ocnvfv2 5539 . . . 4 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0) ∧ 𝑁 ∈ (ℤ‘0)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁)
2018, 19syl5eqr 2134 . . 3 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0) ∧ 𝑁 ∈ (ℤ‘0)) → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁)
213, 8, 20syl2anc 403 . 2 (𝑁 ∈ ℕ0 → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁)
2213, 21eqtrd 2120 1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438   class class class wbr 3837  cmpt 3891  ωcom 4395  ccnv 4427  wf 4998  1-1-ontowf1o 5001  cfv 5002  (class class class)co 5634  freccfrec 6137  cen 6435  0cc0 7329  1c1 7330   + caddc 7332  0cn0 8643  cz 8720  cuz 8988  ...cfz 9393  chash 10148
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-recs 6052  df-frec 6138  df-1o 6163  df-er 6272  df-en 6438  df-dom 6439  df-fin 6440  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-inn 8395  df-n0 8644  df-z 8721  df-uz 8989  df-fz 9394  df-ihash 10149
This theorem is referenced by:  fz1eqb  10164  isfinite4im  10166  fihasheq0  10167  hashsng  10171  fseq1hash  10174  hashfz  10194  isummolemnm  10733  isummolem2a  10735  isummo  10737  zisum  10738  fisum  10742  phicl2  11272  phibnd  11275  hashdvds  11279  phiprmpw  11280
  Copyright terms: Public domain W3C validator