Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfz1 GIF version

Theorem hashfz1 10581
 Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashfz1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)

Proof of Theorem hashfz1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0zd 9110 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ ℤ)
2 eqid 2140 . . . . . 6 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
31, 2frec2uzf1od 10230 . . . . 5 (𝑁 ∈ ℕ0 → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0))
4 f1ocnv 5389 . . . . 5 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)–1-1-onto→ω)
5 f1of 5376 . . . . 5 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)–1-1-onto→ω → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)⟶ω)
63, 4, 53syl 17 . . . 4 (𝑁 ∈ ℕ0frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):(ℤ‘0)⟶ω)
7 elnn0uz 9407 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
87biimpi 119 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
96, 8ffvelrnd 5565 . . 3 (𝑁 ∈ ℕ0 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω)
102frecfzennn 10250 . . . 4 (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
1110ensymd 6686 . . 3 (𝑁 ∈ ℕ0 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁))
12 hashennn 10578 . . 3 (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ∈ ω ∧ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁) ≈ (1...𝑁)) → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)))
139, 11, 12syl2anc 409 . 2 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)))
14 oveq1 5790 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
1514cbvmptv 4033 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1))
16 freceq1 6298 . . . . . 6 ((𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑦 ∈ ℤ ↦ (𝑦 + 1)) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0))
1715, 16ax-mp 5 . . . . 5 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)
1817fveq1i 5431 . . . 4 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
19 f1ocnvfv2 5688 . . . 4 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0) ∧ 𝑁 ∈ (ℤ‘0)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁)
2018, 19syl5eqr 2187 . . 3 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→(ℤ‘0) ∧ 𝑁 ∈ (ℤ‘0)) → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁)
213, 8, 20syl2anc 409 . 2 (𝑁 ∈ ℕ0 → (frec((𝑦 ∈ ℤ ↦ (𝑦 + 1)), 0)‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) = 𝑁)
2213, 21eqtrd 2173 1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1332   ∈ wcel 1481   class class class wbr 3938   ↦ cmpt 3998  ωcom 4513  ◡ccnv 4547  ⟶wf 5128  –1-1-onto→wf1o 5131  ‘cfv 5132  (class class class)co 5783  freccfrec 6296   ≈ cen 6641  0cc0 7664  1c1 7665   + caddc 7667  ℕ0cn0 9021  ℤcz 9098  ℤ≥cuz 9370  ...cfz 9841  ♯chash 10573 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4052  ax-sep 4055  ax-nul 4063  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-iinf 4511  ax-cnex 7755  ax-resscn 7756  ax-1cn 7757  ax-1re 7758  ax-icn 7759  ax-addcl 7760  ax-addrcl 7761  ax-mulcl 7762  ax-addcom 7764  ax-addass 7766  ax-distr 7768  ax-i2m1 7769  ax-0lt1 7770  ax-0id 7772  ax-rnegex 7773  ax-cnre 7775  ax-pre-ltirr 7776  ax-pre-ltwlin 7777  ax-pre-lttrn 7778  ax-pre-apti 7779  ax-pre-ltadd 7780 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-tr 4036  df-id 4224  df-iord 4297  df-on 4299  df-ilim 4300  df-suc 4302  df-iom 4514  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-rn 4559  df-res 4560  df-ima 4561  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-f1 5137  df-fo 5138  df-f1o 5139  df-fv 5140  df-riota 5739  df-ov 5786  df-oprab 5787  df-mpo 5788  df-recs 6211  df-frec 6297  df-1o 6322  df-er 6438  df-en 6644  df-dom 6645  df-fin 6646  df-pnf 7846  df-mnf 7847  df-xr 7848  df-ltxr 7849  df-le 7850  df-sub 7979  df-neg 7980  df-inn 8765  df-n0 9022  df-z 9099  df-uz 9371  df-fz 9842  df-ihash 10574 This theorem is referenced by:  fz1eqb  10589  isfinite4im  10591  fihasheq0  10592  hashsng  10596  fseq1hash  10599  hashfz  10619  nnf1o  11197  summodclem2a  11202  summodc  11204  zsumdc  11205  fsum3  11208  mertenslemi1  11356  prodmodclem3  11396  prodmodclem2a  11397  zproddc  11400  fprodseq  11404  phicl2  11946  phibnd  11949  hashdvds  11953  phiprmpw  11954
 Copyright terms: Public domain W3C validator