| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frecuzrdgsuct | GIF version | ||
| Description: Successor value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 29-Apr-2022.) |
| Ref | Expression |
|---|---|
| frecuzrdgrclt.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| frecuzrdgrclt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| frecuzrdgrclt.t | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
| frecuzrdgrclt.f | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| frecuzrdgrclt.r | ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
| frecuzrdgsuct.ran | ⊢ (𝜑 → 𝑃 = ran 𝑅) |
| Ref | Expression |
|---|---|
| frecuzrdgsuct | ⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frecuzrdgrclt.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 2 | frecuzrdgrclt.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 3 | frecuzrdgrclt.t | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | |
| 4 | frecuzrdgrclt.f | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
| 5 | frecuzrdgrclt.r | . 2 ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) | |
| 6 | oveq1 5974 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1)) | |
| 7 | 6 | cbvmptv 4156 | . . 3 ⊢ (𝑧 ∈ ℤ ↦ (𝑧 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1)) |
| 8 | freceq1 6501 | . . 3 ⊢ ((𝑧 ∈ ℤ ↦ (𝑧 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1)) → frec((𝑧 ∈ ℤ ↦ (𝑧 + 1)), 𝐶) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ frec((𝑧 ∈ ℤ ↦ (𝑧 + 1)), 𝐶) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
| 10 | frecuzrdgsuct.ran | . 2 ⊢ (𝜑 → 𝑃 = ran 𝑅) | |
| 11 | 1, 2, 3, 4, 5, 9, 10 | frecuzrdgsuctlem 10605 | 1 ⊢ ((𝜑 ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃‘𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 ⊆ wss 3174 〈cop 3646 ↦ cmpt 4121 ran crn 4694 ‘cfv 5290 (class class class)co 5967 ∈ cmpo 5969 freccfrec 6499 1c1 7961 + caddc 7963 ℤcz 9407 ℤ≥cuz 9683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 |
| This theorem is referenced by: seq3p1 10647 seqp1cd 10652 |
| Copyright terms: Public domain | W3C validator |