ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgsuct GIF version

Theorem frecuzrdgsuct 9720
Description: Successor value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 29-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c (𝜑𝐶 ∈ ℤ)
frecuzrdgrclt.a (𝜑𝐴𝑆)
frecuzrdgrclt.t (𝜑𝑆𝑇)
frecuzrdgrclt.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrclt.r 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgsuct.ran (𝜑𝑃 = ran 𝑅)
Assertion
Ref Expression
frecuzrdgsuct ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃𝐵)))
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑃(𝑥,𝑦)

Proof of Theorem frecuzrdgsuct
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . 2 (𝜑𝐶 ∈ ℤ)
2 frecuzrdgrclt.a . 2 (𝜑𝐴𝑆)
3 frecuzrdgrclt.t . 2 (𝜑𝑆𝑇)
4 frecuzrdgrclt.f . 2 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5 frecuzrdgrclt.r . 2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
6 oveq1 5598 . . . 4 (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1))
76cbvmptv 3899 . . 3 (𝑧 ∈ ℤ ↦ (𝑧 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1))
8 freceq1 6089 . . 3 ((𝑧 ∈ ℤ ↦ (𝑧 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1)) → frec((𝑧 ∈ ℤ ↦ (𝑧 + 1)), 𝐶) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶))
97, 8ax-mp 7 . 2 frec((𝑧 ∈ ℤ ↦ (𝑧 + 1)), 𝐶) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
10 frecuzrdgsuct.ran . 2 (𝜑𝑃 = ran 𝑅)
111, 2, 3, 4, 5, 9, 10frecuzrdgsuctlem 9719 1 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  wss 2984  cop 3425  cmpt 3865  ran crn 4402  cfv 4969  (class class class)co 5591  cmpt2 5593  freccfrec 6087  1c1 7254   + caddc 7256  cz 8646  cuz 8914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-addcom 7348  ax-addass 7350  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-0id 7356  ax-rnegex 7357  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-ltadd 7364
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-iord 4157  df-on 4159  df-ilim 4160  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-frec 6088  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-inn 8317  df-n0 8566  df-z 8647  df-uz 8915
This theorem is referenced by:  iseqp1t  9758
  Copyright terms: Public domain W3C validator