![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > isomninn | GIF version |
Description: Omniscience stated in terms of natural numbers. Similar to isomnimap 7196 but it will sometimes be more convenient to use 0 and 1 rather than ∅ and 1o. (Contributed by Jim Kingdon, 30-Aug-2023.) |
Ref | Expression |
---|---|
isomninn | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5925 | . . . 4 ⊢ (𝑎 = 𝑥 → (𝑎 + 1) = (𝑥 + 1)) | |
2 | 1 | cbvmptv 4125 | . . 3 ⊢ (𝑎 ∈ ℤ ↦ (𝑎 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1)) |
3 | freceq1 6445 | . . 3 ⊢ ((𝑎 ∈ ℤ ↦ (𝑎 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1)) → frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
5 | 4 | isomninnlem 15520 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 {cpr 3619 ↦ cmpt 4090 ‘cfv 5254 (class class class)co 5918 freccfrec 6443 ↑𝑚 cmap 6702 Omnicomni 7193 0cc0 7872 1c1 7873 + caddc 7875 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-recs 6358 df-frec 6444 df-1o 6469 df-2o 6470 df-map 6704 df-omni 7194 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 |
This theorem is referenced by: trilpolemlt1 15531 trilpo 15533 |
Copyright terms: Public domain | W3C validator |