![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > isomninn | GIF version |
Description: Omniscience stated in terms of natural numbers. Similar to isomnimap 7148 but it will sometimes be more convenient to use 0 and 1 rather than ∅ and 1o. (Contributed by Jim Kingdon, 30-Aug-2023.) |
Ref | Expression |
---|---|
isomninn | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5895 | . . . 4 ⊢ (𝑎 = 𝑥 → (𝑎 + 1) = (𝑥 + 1)) | |
2 | 1 | cbvmptv 4111 | . . 3 ⊢ (𝑎 ∈ ℤ ↦ (𝑎 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1)) |
3 | freceq1 6406 | . . 3 ⊢ ((𝑎 ∈ ℤ ↦ (𝑎 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1)) → frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
5 | 4 | isomninnlem 15019 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 = wceq 1363 ∈ wcel 2158 ∀wral 2465 ∃wrex 2466 {cpr 3605 ↦ cmpt 4076 ‘cfv 5228 (class class class)co 5888 freccfrec 6404 ↑𝑚 cmap 6661 Omnicomni 7145 0cc0 7824 1c1 7825 + caddc 7827 ℤcz 9266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-addcom 7924 ax-addass 7926 ax-distr 7928 ax-i2m1 7929 ax-0lt1 7930 ax-0id 7932 ax-rnegex 7933 ax-cnre 7935 ax-pre-ltirr 7936 ax-pre-ltwlin 7937 ax-pre-lttrn 7938 ax-pre-ltadd 7940 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-recs 6319 df-frec 6405 df-1o 6430 df-2o 6431 df-map 6663 df-omni 7146 df-pnf 8007 df-mnf 8008 df-xr 8009 df-ltxr 8010 df-le 8011 df-sub 8143 df-neg 8144 df-inn 8933 df-n0 9190 df-z 9267 df-uz 9542 |
This theorem is referenced by: trilpolemlt1 15030 trilpo 15032 |
Copyright terms: Public domain | W3C validator |