![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frecuzrdgdom | GIF version |
Description: The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.) |
Ref | Expression |
---|---|
frecuzrdgrclt.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frecuzrdgrclt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
frecuzrdgrclt.t | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
frecuzrdgrclt.f | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
frecuzrdgrclt.r | ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
Ref | Expression |
---|---|
frecuzrdgdom | ⊢ (𝜑 → dom ran 𝑅 = (ℤ≥‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frecuzrdgrclt.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
2 | frecuzrdgrclt.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | frecuzrdgrclt.t | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | |
4 | frecuzrdgrclt.f | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
5 | frecuzrdgrclt.r | . 2 ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) | |
6 | oveq1 5651 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1)) | |
7 | 6 | cbvmptv 3932 | . . 3 ⊢ (𝑧 ∈ ℤ ↦ (𝑧 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1)) |
8 | freceq1 6149 | . . 3 ⊢ ((𝑧 ∈ ℤ ↦ (𝑧 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1)) → frec((𝑧 ∈ ℤ ↦ (𝑧 + 1)), 𝐶) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)) | |
9 | 7, 8 | ax-mp 7 | . 2 ⊢ frec((𝑧 ∈ ℤ ↦ (𝑧 + 1)), 𝐶) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
10 | 1, 2, 3, 4, 5, 9 | frecuzrdgdomlem 9812 | 1 ⊢ (𝜑 → dom ran 𝑅 = (ℤ≥‘𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 ∈ wcel 1438 ⊆ wss 2999 〈cop 3447 ↦ cmpt 3897 dom cdm 4436 ran crn 4437 ‘cfv 5010 (class class class)co 5644 ↦ cmpt2 5646 freccfrec 6147 1c1 7341 + caddc 7343 ℤcz 8740 ℤ≥cuz 9009 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-coll 3952 ax-sep 3955 ax-nul 3963 ax-pow 4007 ax-pr 4034 ax-un 4258 ax-setind 4351 ax-iinf 4401 ax-cnex 7426 ax-resscn 7427 ax-1cn 7428 ax-1re 7429 ax-icn 7430 ax-addcl 7431 ax-addrcl 7432 ax-mulcl 7433 ax-addcom 7435 ax-addass 7437 ax-distr 7439 ax-i2m1 7440 ax-0lt1 7441 ax-0id 7443 ax-rnegex 7444 ax-cnre 7446 ax-pre-ltirr 7447 ax-pre-ltwlin 7448 ax-pre-lttrn 7449 ax-pre-ltadd 7451 |
This theorem depends on definitions: df-bi 115 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-pw 3429 df-sn 3450 df-pr 3451 df-op 3453 df-uni 3652 df-int 3687 df-iun 3730 df-br 3844 df-opab 3898 df-mpt 3899 df-tr 3935 df-id 4118 df-iord 4191 df-on 4193 df-ilim 4194 df-suc 4196 df-iom 4404 df-xp 4442 df-rel 4443 df-cnv 4444 df-co 4445 df-dm 4446 df-rn 4447 df-res 4448 df-ima 4449 df-iota 4975 df-fun 5012 df-fn 5013 df-f 5014 df-f1 5015 df-fo 5016 df-f1o 5017 df-fv 5018 df-riota 5600 df-ov 5647 df-oprab 5648 df-mpt2 5649 df-1st 5903 df-2nd 5904 df-recs 6062 df-frec 6148 df-pnf 7514 df-mnf 7515 df-xr 7516 df-ltxr 7517 df-le 7518 df-sub 7645 df-neg 7646 df-inn 8413 df-n0 8664 df-z 8741 df-uz 9010 |
This theorem is referenced by: frecuzrdgfunlem 9814 frecuzrdgtclt 9816 |
Copyright terms: Public domain | W3C validator |