![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > iswomninn | GIF version |
Description: Weak omniscience stated in terms of natural numbers. Similar to iswomnimap 7167 but it will sometimes be more convenient to use 0 and 1 rather than ∅ and 1o. (Contributed by Jim Kingdon, 20-Jun-2024.) |
Ref | Expression |
---|---|
iswomninn | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5885 | . . . 4 ⊢ (𝑎 = 𝑥 → (𝑎 + 1) = (𝑥 + 1)) | |
2 | 1 | cbvmptv 4101 | . . 3 ⊢ (𝑎 ∈ ℤ ↦ (𝑎 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1)) |
3 | freceq1 6396 | . . 3 ⊢ ((𝑎 ∈ ℤ ↦ (𝑎 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1)) → frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
5 | 4 | iswomninnlem 14938 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ∀wral 2455 {cpr 3595 ↦ cmpt 4066 ‘cfv 5218 (class class class)co 5878 freccfrec 6394 ↑𝑚 cmap 6651 WOmnicwomni 7164 0cc0 7814 1c1 7815 + caddc 7817 ℤcz 9256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-recs 6309 df-frec 6395 df-1o 6420 df-2o 6421 df-map 6653 df-womni 7165 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-inn 8923 df-n0 9180 df-z 9257 df-uz 9532 |
This theorem is referenced by: iswomni0 14940 redcwlpo 14944 |
Copyright terms: Public domain | W3C validator |