Theorem List for Intuitionistic Logic Explorer - 11001-11100   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | shftvalg 11001 | 
Value of a sequence shifted by 𝐴.  (Contributed by Scott Fenton,
       16-Dec-2017.)
 | 
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵 − 𝐴))) | 
|   | 
| Theorem | shftval4g 11002 | 
Value of a sequence shifted by -𝐴.  (Contributed by Jim Kingdon,
       19-Aug-2021.)
 | 
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))) | 
|   | 
| Theorem | seq3shft 11003* | 
Shifting the index set of a sequence.  (Contributed by NM, 17-Mar-2005.)
       (Revised by Jim Kingdon, 17-Oct-2022.)
 | 
| ⊢ (𝜑 → 𝐹 ∈ 𝑉)   
 &   ⊢ (𝜑 → 𝑀 ∈ ℤ)    &   ⊢ (𝜑 → 𝑁 ∈ ℤ)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 − 𝑁))) → (𝐹‘𝑥) ∈ 𝑆)   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    ⇒   ⊢ (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀 − 𝑁)( + , 𝐹) shift 𝑁)) | 
|   | 
| 4.8.2  Real and imaginary parts;
 conjugate
 | 
|   | 
| Syntax | ccj 11004 | 
Extend class notation to include complex conjugate function.
 | 
| class ∗ | 
|   | 
| Syntax | cre 11005 | 
Extend class notation to include real part of a complex number.
 | 
| class ℜ | 
|   | 
| Syntax | cim 11006 | 
Extend class notation to include imaginary part of a complex number.
 | 
| class ℑ | 
|   | 
| Definition | df-cj 11007* | 
Define the complex conjugate function.  See cjcli 11078 for its closure and
       cjval 11010 for its value.  (Contributed by NM,
9-May-1999.)  (Revised by
       Mario Carneiro, 6-Nov-2013.)
 | 
| ⊢ ∗ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ))) | 
|   | 
| Definition | df-re 11008 | 
Define a function whose value is the real part of a complex number.  See
       reval 11014 for its value, recli 11076 for its closure, and replim 11024 for its use
       in decomposing a complex number.  (Contributed by NM, 9-May-1999.)
 | 
| ⊢ ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) | 
|   | 
| Definition | df-im 11009 | 
Define a function whose value is the imaginary part of a complex number.
       See imval 11015 for its value, imcli 11077 for its closure, and replim 11024 for its
       use in decomposing a complex number.  (Contributed by NM,
       9-May-1999.)
 | 
| ⊢ ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) | 
|   | 
| Theorem | cjval 11010* | 
The value of the conjugate of a complex number.  (Contributed by Mario
       Carneiro, 6-Nov-2013.)
 | 
| ⊢ (𝐴 ∈ ℂ →
 (∗‘𝐴) =
 (℩𝑥 ∈
 ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i
 · (𝐴 − 𝑥)) ∈
 ℝ))) | 
|   | 
| Theorem | cjth 11011 | 
The defining property of the complex conjugate.  (Contributed by Mario
       Carneiro, 6-Nov-2013.)
 | 
| ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈
 ℝ)) | 
|   | 
| Theorem | cjf 11012 | 
Domain and codomain of the conjugate function.  (Contributed by Mario
       Carneiro, 6-Nov-2013.)
 | 
| ⊢
 ∗:ℂ⟶ℂ | 
|   | 
| Theorem | cjcl 11013 | 
The conjugate of a complex number is a complex number (closure law).
       (Contributed by NM, 10-May-1999.)  (Revised by Mario Carneiro,
       6-Nov-2013.)
 | 
| ⊢ (𝐴 ∈ ℂ →
 (∗‘𝐴) ∈
 ℂ) | 
|   | 
| Theorem | reval 11014 | 
The value of the real part of a complex number.  (Contributed by NM,
       9-May-1999.)  (Revised by Mario Carneiro, 6-Nov-2013.)
 | 
| ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) | 
|   | 
| Theorem | imval 11015 | 
The value of the imaginary part of a complex number.  (Contributed by
       NM, 9-May-1999.)  (Revised by Mario Carneiro, 6-Nov-2013.)
 | 
| ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i))) | 
|   | 
| Theorem | imre 11016 | 
The imaginary part of a complex number in terms of the real part
       function.  (Contributed by NM, 12-May-2005.)  (Revised by Mario
       Carneiro, 6-Nov-2013.)
 | 
| ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i ·
 𝐴))) | 
|   | 
| Theorem | reim 11017 | 
The real part of a complex number in terms of the imaginary part
       function.  (Contributed by Mario Carneiro, 31-Mar-2015.)
 | 
| ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i ·
 𝐴))) | 
|   | 
| Theorem | recl 11018 | 
The real part of a complex number is real.  (Contributed by NM,
       9-May-1999.)  (Revised by Mario Carneiro, 6-Nov-2013.)
 | 
| ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈
 ℝ) | 
|   | 
| Theorem | imcl 11019 | 
The imaginary part of a complex number is real.  (Contributed by NM,
       9-May-1999.)  (Revised by Mario Carneiro, 6-Nov-2013.)
 | 
| ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈
 ℝ) | 
|   | 
| Theorem | ref 11020 | 
Domain and codomain of the real part function.  (Contributed by Paul
       Chapman, 22-Oct-2007.)  (Revised by Mario Carneiro, 6-Nov-2013.)
 | 
| ⊢
 ℜ:ℂ⟶ℝ | 
|   | 
| Theorem | imf 11021 | 
Domain and codomain of the imaginary part function.  (Contributed by
       Paul Chapman, 22-Oct-2007.)  (Revised by Mario Carneiro, 6-Nov-2013.)
 | 
| ⊢
 ℑ:ℂ⟶ℝ | 
|   | 
| Theorem | crre 11022 | 
The real part of a complex number representation.  Definition 10-3.1 of
       [Gleason] p. 132.  (Contributed by NM,
12-May-2005.)  (Revised by Mario
       Carneiro, 7-Nov-2013.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
 (ℜ‘(𝐴 + (i
 · 𝐵))) = 𝐴) | 
|   | 
| Theorem | crim 11023 | 
The real part of a complex number representation.  Definition 10-3.1 of
       [Gleason] p. 132.  (Contributed by NM,
12-May-2005.)  (Revised by Mario
       Carneiro, 7-Nov-2013.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
 (ℑ‘(𝐴 + (i
 · 𝐵))) = 𝐵) | 
|   | 
| Theorem | replim 11024 | 
Reconstruct a complex number from its real and imaginary parts.
       (Contributed by NM, 10-May-1999.)  (Revised by Mario Carneiro,
       7-Nov-2013.)
 | 
| ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | 
|   | 
| Theorem | remim 11025 | 
Value of the conjugate of a complex number.  The value is the real part
       minus i times the imaginary part.  Definition
10-3.2 of [Gleason]
       p. 132.  (Contributed by NM, 10-May-1999.)  (Revised by Mario Carneiro,
       7-Nov-2013.)
 | 
| ⊢ (𝐴 ∈ ℂ →
 (∗‘𝐴) =
 ((ℜ‘𝐴) −
 (i · (ℑ‘𝐴)))) | 
|   | 
| Theorem | reim0 11026 | 
The imaginary part of a real number is 0.  (Contributed by NM,
     18-Mar-2005.)  (Revised by Mario Carneiro, 7-Nov-2013.)
 | 
| ⊢ (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0) | 
|   | 
| Theorem | reim0b 11027 | 
A number is real iff its imaginary part is 0.  (Contributed by NM,
     26-Sep-2005.)
 | 
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) | 
|   | 
| Theorem | rereb 11028 | 
A number is real iff it equals its real part.  Proposition 10-3.4(f) of
     [Gleason] p. 133.  (Contributed by NM,
20-Aug-2008.)
 | 
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴)) | 
|   | 
| Theorem | mulreap 11029 | 
A product with a real multiplier apart from zero is real iff the
     multiplicand is real.  (Contributed by Jim Kingdon, 14-Jun-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ)) | 
|   | 
| Theorem | rere 11030 | 
A real number equals its real part.  One direction of Proposition
     10-3.4(f) of [Gleason] p. 133. 
(Contributed by Paul Chapman,
     7-Sep-2007.)
 | 
| ⊢ (𝐴 ∈ ℝ → (ℜ‘𝐴) = 𝐴) | 
|   | 
| Theorem | cjreb 11031 | 
A number is real iff it equals its complex conjugate.  Proposition
     10-3.4(f) of [Gleason] p. 133. 
(Contributed by NM, 2-Jul-2005.)  (Revised
     by Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔
 (∗‘𝐴) = 𝐴)) | 
|   | 
| Theorem | recj 11032 | 
Real part of a complex conjugate.  (Contributed by Mario Carneiro,
     14-Jul-2014.)
 | 
| ⊢ (𝐴 ∈ ℂ →
 (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)) | 
|   | 
| Theorem | reneg 11033 | 
Real part of negative.  (Contributed by NM, 17-Mar-2005.)  (Revised by
     Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴)) | 
|   | 
| Theorem | readd 11034 | 
Real part distributes over addition.  (Contributed by NM, 17-Mar-2005.)
     (Revised by Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
 (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))) | 
|   | 
| Theorem | resub 11035 | 
Real part distributes over subtraction.  (Contributed by NM,
     17-Mar-2005.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
 (ℜ‘(𝐴 −
 𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵))) | 
|   | 
| Theorem | remullem 11036 | 
Lemma for remul 11037, immul 11044, and cjmul 11050.  (Contributed by NM,
     28-Jul-1999.)  (Revised by Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
 ((ℜ‘(𝐴 ·
 𝐵)) =
 (((ℜ‘𝐴)
 · (ℜ‘𝐵))
 − ((ℑ‘𝐴)
 · (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))) | 
|   | 
| Theorem | remul 11037 | 
Real part of a product.  (Contributed by NM, 28-Jul-1999.)  (Revised by
     Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
 (ℜ‘(𝐴 ·
 𝐵)) =
 (((ℜ‘𝐴)
 · (ℜ‘𝐵))
 − ((ℑ‘𝐴)
 · (ℑ‘𝐵)))) | 
|   | 
| Theorem | remul2 11038 | 
Real part of a product.  (Contributed by Mario Carneiro, 2-Aug-2014.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) →
 (ℜ‘(𝐴 ·
 𝐵)) = (𝐴 · (ℜ‘𝐵))) | 
|   | 
| Theorem | redivap 11039 | 
Real part of a division.  Related to remul2 11038.  (Contributed by Jim
     Kingdon, 14-Jun-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℜ‘(𝐴 / 𝐵)) = ((ℜ‘𝐴) / 𝐵)) | 
|   | 
| Theorem | imcj 11040 | 
Imaginary part of a complex conjugate.  (Contributed by NM, 18-Mar-2005.)
     (Revised by Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ (𝐴 ∈ ℂ →
 (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)) | 
|   | 
| Theorem | imneg 11041 | 
The imaginary part of a negative number.  (Contributed by NM,
     18-Mar-2005.)  (Revised by Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ (𝐴 ∈ ℂ →
 (ℑ‘-𝐴) =
 -(ℑ‘𝐴)) | 
|   | 
| Theorem | imadd 11042 | 
Imaginary part distributes over addition.  (Contributed by NM,
     18-Mar-2005.)  (Revised by Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
 (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) | 
|   | 
| Theorem | imsub 11043 | 
Imaginary part distributes over subtraction.  (Contributed by NM,
     18-Mar-2005.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
 (ℑ‘(𝐴 −
 𝐵)) =
 ((ℑ‘𝐴) −
 (ℑ‘𝐵))) | 
|   | 
| Theorem | immul 11044 | 
Imaginary part of a product.  (Contributed by NM, 28-Jul-1999.)  (Revised
     by Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
 (ℑ‘(𝐴 ·
 𝐵)) =
 (((ℜ‘𝐴)
 · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) | 
|   | 
| Theorem | immul2 11045 | 
Imaginary part of a product.  (Contributed by Mario Carneiro,
     2-Aug-2014.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) →
 (ℑ‘(𝐴 ·
 𝐵)) = (𝐴 · (ℑ‘𝐵))) | 
|   | 
| Theorem | imdivap 11046 | 
Imaginary part of a division.  Related to immul2 11045.  (Contributed by Jim
     Kingdon, 14-Jun-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℑ‘(𝐴 / 𝐵)) = ((ℑ‘𝐴) / 𝐵)) | 
|   | 
| Theorem | cjre 11047 | 
A real number equals its complex conjugate.  Proposition 10-3.4(f) of
     [Gleason] p. 133.  (Contributed by NM,
8-Oct-1999.)
 | 
| ⊢ (𝐴 ∈ ℝ →
 (∗‘𝐴) = 𝐴) | 
|   | 
| Theorem | cjcj 11048 | 
The conjugate of the conjugate is the original complex number.
     Proposition 10-3.4(e) of [Gleason] p. 133.
(Contributed by NM,
     29-Jul-1999.)  (Proof shortened by Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ (𝐴 ∈ ℂ →
 (∗‘(∗‘𝐴)) = 𝐴) | 
|   | 
| Theorem | cjadd 11049 | 
Complex conjugate distributes over addition.  Proposition 10-3.4(a) of
     [Gleason] p. 133.  (Contributed by NM,
31-Jul-1999.)  (Revised by Mario
     Carneiro, 14-Jul-2014.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
 (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵))) | 
|   | 
| Theorem | cjmul 11050 | 
Complex conjugate distributes over multiplication.  Proposition 10-3.4(c)
     of [Gleason] p. 133.  (Contributed by NM,
29-Jul-1999.)  (Proof shortened
     by Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
 (∗‘(𝐴
 · 𝐵)) =
 ((∗‘𝐴)
 · (∗‘𝐵))) | 
|   | 
| Theorem | ipcnval 11051 | 
Standard inner product on complex numbers.  (Contributed by NM,
     29-Jul-1999.)  (Revised by Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
 (ℜ‘(𝐴 ·
 (∗‘𝐵))) =
 (((ℜ‘𝐴)
 · (ℜ‘𝐵))
 + ((ℑ‘𝐴)
 · (ℑ‘𝐵)))) | 
|   | 
| Theorem | cjmulrcl 11052 | 
A complex number times its conjugate is real.  (Contributed by NM,
     26-Mar-2005.)  (Revised by Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ) | 
|   | 
| Theorem | cjmulval 11053 | 
A complex number times its conjugate.  (Contributed by NM, 1-Feb-2007.)
     (Revised by Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) | 
|   | 
| Theorem | cjmulge0 11054 | 
A complex number times its conjugate is nonnegative.  (Contributed by NM,
     26-Mar-2005.)  (Revised by Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (𝐴 · (∗‘𝐴))) | 
|   | 
| Theorem | cjneg 11055 | 
Complex conjugate of negative.  (Contributed by NM, 27-Feb-2005.)
     (Revised by Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ (𝐴 ∈ ℂ →
 (∗‘-𝐴) =
 -(∗‘𝐴)) | 
|   | 
| Theorem | addcj 11056 | 
A number plus its conjugate is twice its real part.  Compare Proposition
     10-3.4(h) of [Gleason] p. 133. 
(Contributed by NM, 21-Jan-2007.)
     (Revised by Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ (𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴))) | 
|   | 
| Theorem | cjsub 11057 | 
Complex conjugate distributes over subtraction.  (Contributed by NM,
     28-Apr-2005.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
 (∗‘(𝐴 −
 𝐵)) =
 ((∗‘𝐴)
 − (∗‘𝐵))) | 
|   | 
| Theorem | cjexp 11058 | 
Complex conjugate of positive integer exponentiation.  (Contributed by
       NM, 7-Jun-2006.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) →
 (∗‘(𝐴↑𝑁)) = ((∗‘𝐴)↑𝑁)) | 
|   | 
| Theorem | imval2 11059 | 
The imaginary part of a number in terms of complex conjugate.
     (Contributed by NM, 30-Apr-2005.)
 | 
| ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i))) | 
|   | 
| Theorem | re0 11060 | 
The real part of zero.  (Contributed by NM, 27-Jul-1999.)
 | 
| ⊢ (ℜ‘0) = 0 | 
|   | 
| Theorem | im0 11061 | 
The imaginary part of zero.  (Contributed by NM, 27-Jul-1999.)
 | 
| ⊢ (ℑ‘0) = 0 | 
|   | 
| Theorem | re1 11062 | 
The real part of one.  (Contributed by Scott Fenton, 9-Jun-2006.)
 | 
| ⊢ (ℜ‘1) = 1 | 
|   | 
| Theorem | im1 11063 | 
The imaginary part of one.  (Contributed by Scott Fenton, 9-Jun-2006.)
 | 
| ⊢ (ℑ‘1) = 0 | 
|   | 
| Theorem | rei 11064 | 
The real part of i.  (Contributed by Scott Fenton,
9-Jun-2006.)
 | 
| ⊢ (ℜ‘i) = 0 | 
|   | 
| Theorem | imi 11065 | 
The imaginary part of i.  (Contributed by Scott Fenton,
     9-Jun-2006.)
 | 
| ⊢ (ℑ‘i) = 1 | 
|   | 
| Theorem | cj0 11066 | 
The conjugate of zero.  (Contributed by NM, 27-Jul-1999.)
 | 
| ⊢ (∗‘0) = 0 | 
|   | 
| Theorem | cji 11067 | 
The complex conjugate of the imaginary unit.  (Contributed by NM,
     26-Mar-2005.)
 | 
| ⊢ (∗‘i) = -i | 
|   | 
| Theorem | cjreim 11068 | 
The conjugate of a representation of a complex number in terms of real and
     imaginary parts.  (Contributed by NM, 1-Jul-2005.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
 (∗‘(𝐴 + (i
 · 𝐵))) = (𝐴 − (i · 𝐵))) | 
|   | 
| Theorem | cjreim2 11069 | 
The conjugate of the representation of a complex number in terms of real
     and imaginary parts.  (Contributed by NM, 1-Jul-2005.)  (Proof shortened
     by Mario Carneiro, 29-May-2016.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
 (∗‘(𝐴 −
 (i · 𝐵))) = (𝐴 + (i · 𝐵))) | 
|   | 
| Theorem | cj11 11070 | 
Complex conjugate is a one-to-one function.  (Contributed by NM,
     29-Apr-2005.)  (Proof shortened by Eric Schmidt, 2-Jul-2009.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
 ((∗‘𝐴) =
 (∗‘𝐵) ↔
 𝐴 = 𝐵)) | 
|   | 
| Theorem | cjap 11071 | 
Complex conjugate and apartness.  (Contributed by Jim Kingdon,
       14-Jun-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
 ((∗‘𝐴) #
 (∗‘𝐵) ↔
 𝐴 # 𝐵)) | 
|   | 
| Theorem | cjap0 11072 | 
A number is apart from zero iff its complex conjugate is apart from zero.
     (Contributed by Jim Kingdon, 14-Jun-2020.)
 | 
| ⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ↔ (∗‘𝐴) # 0)) | 
|   | 
| Theorem | cjne0 11073 | 
A number is nonzero iff its complex conjugate is nonzero.  Also see
     cjap0 11072 which is similar but for apartness. 
(Contributed by NM,
     29-Apr-2005.)
 | 
| ⊢ (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0)) | 
|   | 
| Theorem | cjdivap 11074 | 
Complex conjugate distributes over division.  (Contributed by Jim Kingdon,
     14-Jun-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) | 
|   | 
| Theorem | cnrecnv 11075* | 
The inverse to the canonical bijection from (ℝ ×
ℝ) to ℂ
       from cnref1o 9725.  (Contributed by Mario Carneiro,
25-Aug-2014.)
 | 
| ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))    ⇒   ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦
 〈(ℜ‘𝑧),
 (ℑ‘𝑧)〉) | 
|   | 
| Theorem | recli 11076 | 
The real part of a complex number is real (closure law).  (Contributed
       by NM, 11-May-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (ℜ‘𝐴) ∈ ℝ | 
|   | 
| Theorem | imcli 11077 | 
The imaginary part of a complex number is real (closure law).
       (Contributed by NM, 11-May-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (ℑ‘𝐴) ∈
 ℝ | 
|   | 
| Theorem | cjcli 11078 | 
Closure law for complex conjugate.  (Contributed by NM, 11-May-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (∗‘𝐴) ∈
 ℂ | 
|   | 
| Theorem | replimi 11079 | 
Construct a complex number from its real and imaginary parts.
       (Contributed by NM, 1-Oct-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) | 
|   | 
| Theorem | cjcji 11080 | 
The conjugate of the conjugate is the original complex number.
       Proposition 10-3.4(e) of [Gleason] p.
133.  (Contributed by NM,
       11-May-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢
 (∗‘(∗‘𝐴)) = 𝐴 | 
|   | 
| Theorem | reim0bi 11081 | 
A number is real iff its imaginary part is 0.  (Contributed by NM,
       29-May-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0) | 
|   | 
| Theorem | rerebi 11082 | 
A real number equals its real part.  Proposition 10-3.4(f) of [Gleason]
       p. 133.  (Contributed by NM, 27-Oct-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴) | 
|   | 
| Theorem | cjrebi 11083 | 
A number is real iff it equals its complex conjugate.  Proposition
       10-3.4(f) of [Gleason] p. 133. 
(Contributed by NM, 11-Oct-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (𝐴 ∈ ℝ ↔
 (∗‘𝐴) = 𝐴) | 
|   | 
| Theorem | recji 11084 | 
Real part of a complex conjugate.  (Contributed by NM, 2-Oct-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢
 (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴) | 
|   | 
| Theorem | imcji 11085 | 
Imaginary part of a complex conjugate.  (Contributed by NM,
       2-Oct-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢
 (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴) | 
|   | 
| Theorem | cjmulrcli 11086 | 
A complex number times its conjugate is real.  (Contributed by NM,
       11-May-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (𝐴 · (∗‘𝐴)) ∈ ℝ | 
|   | 
| Theorem | cjmulvali 11087 | 
A complex number times its conjugate.  (Contributed by NM,
       2-Oct-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) | 
|   | 
| Theorem | cjmulge0i 11088 | 
A complex number times its conjugate is nonnegative.  (Contributed by
       NM, 28-May-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ 0 ≤ (𝐴 · (∗‘𝐴)) | 
|   | 
| Theorem | renegi 11089 | 
Real part of negative.  (Contributed by NM, 2-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (ℜ‘-𝐴) = -(ℜ‘𝐴) | 
|   | 
| Theorem | imnegi 11090 | 
Imaginary part of negative.  (Contributed by NM, 2-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (ℑ‘-𝐴) = -(ℑ‘𝐴) | 
|   | 
| Theorem | cjnegi 11091 | 
Complex conjugate of negative.  (Contributed by NM, 2-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (∗‘-𝐴) = -(∗‘𝐴) | 
|   | 
| Theorem | addcji 11092 | 
A number plus its conjugate is twice its real part.  Compare Proposition
       10-3.4(h) of [Gleason] p. 133. 
(Contributed by NM, 2-Oct-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴)) | 
|   | 
| Theorem | readdi 11093 | 
Real part distributes over addition.  (Contributed by NM,
       28-Jul-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)) | 
|   | 
| Theorem | imaddi 11094 | 
Imaginary part distributes over addition.  (Contributed by NM,
       28-Jul-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)) | 
|   | 
| Theorem | remuli 11095 | 
Real part of a product.  (Contributed by NM, 28-Jul-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) | 
|   | 
| Theorem | immuli 11096 | 
Imaginary part of a product.  (Contributed by NM, 28-Jul-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) | 
|   | 
| Theorem | cjaddi 11097 | 
Complex conjugate distributes over addition.  Proposition 10-3.4(a) of
       [Gleason] p. 133.  (Contributed by NM,
28-Jul-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)) | 
|   | 
| Theorem | cjmuli 11098 | 
Complex conjugate distributes over multiplication.  Proposition
       10-3.4(c) of [Gleason] p. 133. 
(Contributed by NM, 28-Jul-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)) | 
|   | 
| Theorem | ipcni 11099 | 
Standard inner product on complex numbers.  (Contributed by NM,
       2-Oct-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))) | 
|   | 
| Theorem | cjdivapi 11100 | 
Complex conjugate distributes over division.  (Contributed by Jim
       Kingdon, 14-Jun-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (𝐵 # 0 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) |