| Intuitionistic Logic Explorer Theorem List (p. 111 of 165) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description | |||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Statement | |||||||||||||||||||||||||||||||||||||
| Theorem | permnn 11001 | The number of permutations of 𝑁 − 𝑅 objects from a collection of 𝑁 objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ) | |||||||||||||||||||||||||||||||||||||
| Theorem | bcnm1 11002 | The binomial coefficent of (𝑁 − 1) is 𝑁. (Contributed by Scott Fenton, 16-May-2014.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ ℕ0 → (𝑁C(𝑁 − 1)) = 𝑁) | |||||||||||||||||||||||||||||||||||||
| Theorem | 4bc3eq4 11003 | The value of four choose three. (Contributed by Scott Fenton, 11-Jun-2016.) | |||||||||||||||||||||||||||||||||||
| ⊢ (4C3) = 4 | |||||||||||||||||||||||||||||||||||||
| Theorem | 4bc2eq6 11004 | The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) | |||||||||||||||||||||||||||||||||||
| ⊢ (4C2) = 6 | |||||||||||||||||||||||||||||||||||||
| Syntax | chash 11005 | Extend the definition of a class to include the set size function. | |||||||||||||||||||||||||||||||||||
| class ♯ | |||||||||||||||||||||||||||||||||||||
| Definition | df-ihash 11006* |
Define the set size function ♯, which gives the
cardinality of a
finite set as a member of ℕ0,
and assigns all infinite sets the
value +∞. For example, (♯‘{0, 1, 2}) = 3.
Since we don't know that an arbitrary set is either finite or infinite (by inffiexmid 7076), the behavior beyond finite sets is not as useful as it might appear. For example, we wouldn't expect to be able to define this function in a meaningful way on 𝒫 1o, which cannot be shown to be finite (per pw1fin 7080). Note that we use the sharp sign (♯) for this function and we use the different character octothorpe (#) for the apartness relation (see df-ap 8737). We adopt the former notation from Corollary 8.2.4 of [AczelRathjen], p. 80 (although that work only defines it for finite sets). This definition (in terms of ∪ and ≼) is not taken directly from the literature, but for finite sets should be equivalent to the conventional definition that the size of a finite set is the unique natural number which is equinumerous to the given set. (Contributed by Jim Kingdon, 19-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω, +∞〉}) ∘ (𝑥 ∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashinfuni 11007* | The ordinal size of an infinite set is ω. (Contributed by Jim Kingdon, 20-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ (ω ≼ 𝐴 → ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = ω) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashinfom 11008 | The value of the ♯ function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ (ω ≼ 𝐴 → (♯‘𝐴) = +∞) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashennnuni 11009* | The ordinal size of a set equinumerous to an element of ω is that element of ω. (Contributed by Jim Kingdon, 20-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = 𝑁) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashennn 11010* | The size of a set equinumerous to an element of ω. (Contributed by Jim Kingdon, 21-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashcl 11011 | Closure of the ♯ function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashfiv01gt1 11012 | The size of a finite set is either 0 or 1 or greater than 1. (Contributed by Jim Kingdon, 21-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑀 ∈ Fin → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashfz1 11013 | The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashen 11014 | Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) | |||||||||||||||||||||||||||||||||||||
| Theorem | hasheqf1o 11015* | The size of two finite sets is equal if and only if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 17-Dec-2017.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |||||||||||||||||||||||||||||||||||||
| Theorem | fiinfnf1o 11016* | There is no bijection between a finite set and an infinite set. By infnfi 7065 the theorem would also hold if "infinite" were expressed as ω ≼ 𝐵. (Contributed by Alexander van der Vekens, 25-Dec-2017.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | |||||||||||||||||||||||||||||||||||||
| Theorem | fihasheqf1oi 11017 | The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → (♯‘𝐴) = (♯‘𝐵)) | |||||||||||||||||||||||||||||||||||||
| Theorem | fihashf1rn 11018 | The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) | |||||||||||||||||||||||||||||||||||||
| Theorem | fihasheqf1od 11019 | The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) ⇒ ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐵)) | |||||||||||||||||||||||||||||||||||||
| Theorem | fz1eqb 11020 | Two possibly-empty 1-based finite sets of sequential integers are equal iff their endpoints are equal. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 29-Mar-2014.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((1...𝑀) = (1...𝑁) ↔ 𝑀 = 𝑁)) | |||||||||||||||||||||||||||||||||||||
| Theorem | filtinf 11021 | The size of an infinite set is greater than the size of a finite set. (Contributed by Jim Kingdon, 21-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Fin ∧ ω ≼ 𝐵) → (♯‘𝐴) < (♯‘𝐵)) | |||||||||||||||||||||||||||||||||||||
| Theorem | isfinite4im 11022 | A finite set is equinumerous to the range of integers from one up to the hash value of the set. (Contributed by Jim Kingdon, 22-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ Fin → (1...(♯‘𝐴)) ≈ 𝐴) | |||||||||||||||||||||||||||||||||||||
| Theorem | fihasheq0 11023 | Two ways of saying a finite set is empty. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 27-Jul-2014.) (Intuitionized by Jim Kingdon, 23-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | |||||||||||||||||||||||||||||||||||||
| Theorem | fihashneq0 11024 | Two ways of saying a finite set is not empty. Also, "A is inhabited" would be equivalent by fin0 7055. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Intuitionized by Jim Kingdon, 23-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ Fin → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅)) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashnncl 11025 | Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) | |||||||||||||||||||||||||||||||||||||
| Theorem | hash0 11026 | The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.) | |||||||||||||||||||||||||||||||||||
| ⊢ (♯‘∅) = 0 | |||||||||||||||||||||||||||||||||||||
| Theorem | fihashelne0d 11027 | A finite set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → ¬ (♯‘𝐴) = 0) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashsng 11028 | The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) | |||||||||||||||||||||||||||||||||||||
| Theorem | fihashen1 11029 | A finite set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) (Intuitionized by Jim Kingdon, 23-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o)) | |||||||||||||||||||||||||||||||||||||
| Theorem | fihashfn 11030 | A function on a finite set is equinumerous to its domain. (Contributed by Mario Carneiro, 12-Mar-2015.) (Intuitionized by Jim Kingdon, 24-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → (♯‘𝐹) = (♯‘𝐴)) | |||||||||||||||||||||||||||||||||||||
| Theorem | fseq1hash 11031 | The value of the size function on a finite 1-based sequence. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 12-Mar-2015.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁) | |||||||||||||||||||||||||||||||||||||
| Theorem | omgadd 11032 | Mapping ordinal addition to integer addition. (Contributed by Jim Kingdon, 24-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺‘𝐴) + (𝐺‘𝐵))) | |||||||||||||||||||||||||||||||||||||
| Theorem | fihashdom 11033 | Dominance relation for the size function. (Contributed by Jim Kingdon, 24-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴 ≼ 𝐵)) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashunlem 11034 | Lemma for hashun 11035. Ordinal size of the union. (Contributed by Jim Kingdon, 25-Feb-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝑀 ∈ ω) & ⊢ (𝜑 → 𝐴 ≈ 𝑁) & ⊢ (𝜑 → 𝐵 ≈ 𝑀) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑀)) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashun 11035 | The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (♯‘(𝐴 ∪ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) | |||||||||||||||||||||||||||||||||||||
| Theorem | 1elfz0hash 11036 | 1 is an element of the finite set of sequential nonnegative integers bounded by the size of a nonempty finite set. (Contributed by AV, 9-May-2020.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 1 ∈ (0...(♯‘𝐴))) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashunsng 11037 | The size of the union of a finite set with a disjoint singleton is one more than the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝐵 ∈ 𝑉 → ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) + 1))) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashprg 11038 | The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV, 18-Sep-2021.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≠ 𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2)) | |||||||||||||||||||||||||||||||||||||
| Theorem | prhash2ex 11039 | There is (at least) one set with two different elements: the unordered pair containing 0 and 1. In contrast to pr0hash2ex 11045, numbers are used instead of sets because their representation is shorter (and more comprehensive). (Contributed by AV, 29-Jan-2020.) | |||||||||||||||||||||||||||||||||||
| ⊢ (♯‘{0, 1}) = 2 | |||||||||||||||||||||||||||||||||||||
| Theorem | hashp1i 11040 | Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) | |||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 ∈ ω & ⊢ 𝐵 = suc 𝐴 & ⊢ (♯‘𝐴) = 𝑀 & ⊢ (𝑀 + 1) = 𝑁 ⇒ ⊢ (♯‘𝐵) = 𝑁 | |||||||||||||||||||||||||||||||||||||
| Theorem | hash1 11041 | Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) | |||||||||||||||||||||||||||||||||||
| ⊢ (♯‘1o) = 1 | |||||||||||||||||||||||||||||||||||||
| Theorem | hash2 11042 | Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) | |||||||||||||||||||||||||||||||||||
| ⊢ (♯‘2o) = 2 | |||||||||||||||||||||||||||||||||||||
| Theorem | hash3 11043 | Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) | |||||||||||||||||||||||||||||||||||
| ⊢ (♯‘3o) = 3 | |||||||||||||||||||||||||||||||||||||
| Theorem | hash4 11044 | Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) | |||||||||||||||||||||||||||||||||||
| ⊢ (♯‘4o) = 4 | |||||||||||||||||||||||||||||||||||||
| Theorem | pr0hash2ex 11045 | There is (at least) one set with two different elements: the unordered pair containing the empty set and the singleton containing the empty set. (Contributed by AV, 29-Jan-2020.) | |||||||||||||||||||||||||||||||||||
| ⊢ (♯‘{∅, {∅}}) = 2 | |||||||||||||||||||||||||||||||||||||
| Theorem | fihashss 11046 | The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) | |||||||||||||||||||||||||||||||||||||
| Theorem | fiprsshashgt1 11047 | The size of a superset of a proper unordered pair is greater than 1. (Contributed by AV, 6-Feb-2021.) | |||||||||||||||||||||||||||||||||||
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶))) | |||||||||||||||||||||||||||||||||||||
| Theorem | fihashssdif 11048 | The size of the difference of a finite set and a finite subset is the set's size minus the subset's. (Contributed by Jim Kingdon, 31-May-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashdifsn 11049 | The size of the difference of a finite set and a singleton subset is the set's size minus 1. (Contributed by Alexander van der Vekens, 6-Jan-2018.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1)) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashdifpr 11050 | The size of the difference of a finite set and a proper ordered pair subset is the set's size minus 2. (Contributed by AV, 16-Dec-2020.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2)) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashfz 11051 | Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashfzo 11052 | Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashfzo0 11053 | Cardinality of a half-open set of integers based at zero. (Contributed by Stefan O'Rear, 15-Aug-2015.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝐵 ∈ ℕ0 → (♯‘(0..^𝐵)) = 𝐵) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashfzp1 11054 | Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashfz0 11055 | Value of the numeric cardinality of a nonempty range of nonnegative integers. (Contributed by Alexander van der Vekens, 21-Jul-2018.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝐵 ∈ ℕ0 → (♯‘(0...𝐵)) = (𝐵 + 1)) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashxp 11056 | The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))) | |||||||||||||||||||||||||||||||||||||
| Theorem | fimaxq 11057* | A finite set of rational numbers has a maximum. (Contributed by Jim Kingdon, 6-Sep-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |||||||||||||||||||||||||||||||||||||
| Theorem | fiubm 11058* | Lemma for fiubz 11059 and fiubnn 11060. A general form of those theorems. (Contributed by Jim Kingdon, 29-Oct-2024.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ ℚ) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |||||||||||||||||||||||||||||||||||||
| Theorem | fiubz 11059* | A finite set of integers has an upper bound which is an integer. (Contributed by Jim Kingdon, 29-Oct-2024.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |||||||||||||||||||||||||||||||||||||
| Theorem | fiubnn 11060* | A finite set of natural numbers has an upper bound which is a a natural number. (Contributed by Jim Kingdon, 29-Oct-2024.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℕ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |||||||||||||||||||||||||||||||||||||
| Theorem | resunimafz0 11061 | The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) ⇒ ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) | |||||||||||||||||||||||||||||||||||||
| Theorem | fnfz0hash 11062 | The size of a function on a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 25-Jun-2018.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (0...𝑁)) → (♯‘𝐹) = (𝑁 + 1)) | |||||||||||||||||||||||||||||||||||||
| Theorem | ffz0hash 11063 | The size of a function on a finite set of sequential nonnegative integers equals the upper bound of the sequence increased by 1. (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Proof shortened by AV, 11-Apr-2021.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(0...𝑁)⟶𝐵) → (♯‘𝐹) = (𝑁 + 1)) | |||||||||||||||||||||||||||||||||||||
| Theorem | ffzo0hash 11064 | The size of a function on a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 25-Mar-2018.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (0..^𝑁)) → (♯‘𝐹) = 𝑁) | |||||||||||||||||||||||||||||||||||||
| Theorem | fnfzo0hash 11065 | The size of a function on a half-open range of nonnegative integers equals the upper bound of this range. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Proof shortened by AV, 11-Apr-2021.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(0..^𝑁)⟶𝐵) → (♯‘𝐹) = 𝑁) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashfacen 11066* | The number of bijections between two sets is a cardinal invariant. (Contributed by Mario Carneiro, 21-Jan-2015.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ≈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) | |||||||||||||||||||||||||||||||||||||
| Theorem | leisorel 11067 | Version of isorel 5938 for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro, 9-Sep-2015.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ≤ 𝐷 ↔ (𝐹‘𝐶) ≤ (𝐹‘𝐷))) | |||||||||||||||||||||||||||||||||||||
| Theorem | zfz1isolemsplit 11068 | Lemma for zfz1iso 11071. Removing one element from an integer range. (Contributed by Jim Kingdon, 8-Sep-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑀 ∈ 𝑋) ⇒ ⊢ (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) | |||||||||||||||||||||||||||||||||||||
| Theorem | zfz1isolemiso 11069* | Lemma for zfz1iso 11071. Adding one element to the order isomorphism. (Contributed by Jim Kingdon, 8-Sep-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ⊆ ℤ) & ⊢ (𝜑 → 𝑀 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑋 𝑧 ≤ 𝑀) & ⊢ (𝜑 → 𝐺 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) & ⊢ (𝜑 → 𝐴 ∈ (1...(♯‘𝑋))) & ⊢ (𝜑 → 𝐵 ∈ (1...(♯‘𝑋))) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ((𝐺 ∪ {〈(♯‘𝑋), 𝑀〉})‘𝐴) < ((𝐺 ∪ {〈(♯‘𝑋), 𝑀〉})‘𝐵))) | |||||||||||||||||||||||||||||||||||||
| Theorem | zfz1isolem1 11070* | Lemma for zfz1iso 11071. Existence of an order isomorphism given the existence of shorter isomorphisms. (Contributed by Jim Kingdon, 7-Sep-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐾 ∈ ω) & ⊢ (𝜑 → ∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦 ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦))) & ⊢ (𝜑 → 𝑋 ⊆ ℤ) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≈ suc 𝐾) & ⊢ (𝜑 → 𝑀 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑋 𝑧 ≤ 𝑀) ⇒ ⊢ (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)) | |||||||||||||||||||||||||||||||||||||
| Theorem | zfz1iso 11071* | A finite set of integers has an order isomorphism to a one-based finite sequence. (Contributed by Jim Kingdon, 3-Sep-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)) | |||||||||||||||||||||||||||||||||||||
| Theorem | seq3coll 11072* | The function 𝐹 contains a sparse set of nonzero values to be summed. The function 𝐺 is an order isomorphism from the set of nonzero values of 𝐹 to a 1-based finite sequence, and 𝐻 collects these nonzero values together. Under these conditions, the sum over the values in 𝐻 yields the same result as the sum over the original set 𝐹. (Contributed by Mario Carneiro, 2-Apr-2014.) (Revised by Jim Kingdon, 9-Apr-2023.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑍 + 𝑘) = 𝑘) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑘 + 𝑍) = 𝑘) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆)) → (𝑘 + 𝑛) ∈ 𝑆) & ⊢ (𝜑 → 𝑍 ∈ 𝑆) & ⊢ (𝜑 → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) & ⊢ (𝜑 → 𝑁 ∈ (1...(♯‘𝐴))) & ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1)) → (𝐻‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹‘𝑘) = 𝑍) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)) | |||||||||||||||||||||||||||||||||||||
| Theorem | hash2en 11073 | Two equivalent ways to say a set has two elements. (Contributed by Jim Kingdon, 4-Dec-2025.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑉 ≈ 2o ↔ (𝑉 ∈ Fin ∧ (♯‘𝑉) = 2)) | |||||||||||||||||||||||||||||||||||||
| Theorem | hashdmprop2dom 11074 | A class which contains two ordered pairs with different first components has at least two elements. (Contributed by AV, 12-Nov-2021.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝑍) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹) ⇒ ⊢ (𝜑 → 2o ≼ dom 𝐹) | |||||||||||||||||||||||||||||||||||||
| Theorem | fundm2domnop0 11075 | A function with a domain containing (at least) two different elements is not an ordered pair. This theorem (which requires that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 13053. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Proof shortened by AV, 15-Nov-2021.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 2o ≼ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) | |||||||||||||||||||||||||||||||||||||
| Theorem | fundm2domnop 11076 | A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 12-Oct-2020.) (Proof shortened by AV, 9-Jun-2021.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((Fun 𝐺 ∧ 2o ≼ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) | |||||||||||||||||||||||||||||||||||||
| Theorem | fun2dmnop0 11077 | A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop 11078 (with the less restrictive requirement that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 13053. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.) | |||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) | |||||||||||||||||||||||||||||||||||||
| Theorem | fun2dmnop 11078 | A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 9-Jun-2021.) | |||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun 𝐺 ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) | |||||||||||||||||||||||||||||||||||||
This section is about words (or strings) over a set (alphabet) defined as finite sequences of symbols (or characters) being elements of the alphabet. Although it is often required that the underlying set/alphabet be nonempty, finite and not a proper class, these restrictions are not made in the current definition df-word 11080. Note that the empty word ∅ (i.e., the empty set) is the only word over an empty alphabet, see 0wrd0 11105. The set Word 𝑆 of words over 𝑆 is the free monoid over 𝑆, where the monoid law is concatenation and the monoid unit is the empty word. Besides the definition of words themselves, several operations on words are defined in this section:
| |||||||||||||||||||||||||||||||||||||
| Syntax | cword 11079 | Syntax for the Word operator. | |||||||||||||||||||||||||||||||||||
| class Word 𝑆 | |||||||||||||||||||||||||||||||||||||
| Definition | df-word 11080* | Define the class of words over a set. A word (sometimes also called a string) is a finite sequence of symbols from a set (alphabet) 𝑆. Definition in Section 9.1 of [AhoHopUll] p. 318. The domain is forced to be an initial segment of ℕ0 so that two words with the same symbols in the same order be equal. The set Word 𝑆 is sometimes denoted by S*, using the Kleene star, although the Kleene star, or Kleene closure, is sometimes reserved to denote an operation on languages. The set Word 𝑆 equipped with concatenation is the free monoid over 𝑆, and the monoid unit is the empty word. (Contributed by FL, 14-Jan-2014.) (Revised by Stefan O'Rear, 14-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) | |||||||||||||||||||||||||||||||||||
| ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |||||||||||||||||||||||||||||||||||||
| Theorem | iswrd 11081* | Property of being a word over a set with an existential quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) | |||||||||||||||||||||||||||||||||||||
| Theorem | wrdval 11082* | Value of the set of words over a set. (Contributed by Stefan O'Rear, 10-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 = ∪ 𝑙 ∈ ℕ0 (𝑆 ↑𝑚 (0..^𝑙))) | |||||||||||||||||||||||||||||||||||||
| Theorem | lencl 11083 | The length of a word is a nonnegative integer. This corresponds to the definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 27-Aug-2015.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0) | |||||||||||||||||||||||||||||||||||||
| Theorem | iswrdinn0 11084 | A zero-based sequence is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 16-Aug-2025.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℕ0) → 𝑊 ∈ Word 𝑆) | |||||||||||||||||||||||||||||||||||||
| Theorem | wrdf 11085 | A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) | |||||||||||||||||||||||||||||||||||||
| Theorem | iswrdiz 11086 | A zero-based sequence is a word. In iswrdinn0 11084 we can specify a length as an nonnegative integer. However, it will occasionally be helpful to allow a negative length, as well as zero, to specify an empty sequence. (Contributed by Jim Kingdon, 18-Aug-2025.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) → 𝑊 ∈ Word 𝑆) | |||||||||||||||||||||||||||||||||||||
| Theorem | wrddm 11087 | The indices of a word (i.e. its domain regarded as function) are elements of an open range of nonnegative integers (of length equal to the length of the word). (Contributed by AV, 2-May-2020.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑊 ∈ Word 𝑆 → dom 𝑊 = (0..^(♯‘𝑊))) | |||||||||||||||||||||||||||||||||||||
| Theorem | sswrd 11088 | The set of words respects ordering on the base set. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑆 ⊆ 𝑇 → Word 𝑆 ⊆ Word 𝑇) | |||||||||||||||||||||||||||||||||||||
| Theorem | snopiswrd 11089 | A singleton of an ordered pair (with 0 as first component) is a word. (Contributed by AV, 23-Nov-2018.) (Proof shortened by AV, 18-Apr-2021.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑆 ∈ 𝑉 → {〈0, 𝑆〉} ∈ Word 𝑉) | |||||||||||||||||||||||||||||||||||||
| Theorem | wrdexg 11090 | The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by JJ, 18-Nov-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 ∈ V) | |||||||||||||||||||||||||||||||||||||
| Theorem | wrdexb 11091 | The set of words over a set is a set, bidirectional version. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑆 ∈ V ↔ Word 𝑆 ∈ V) | |||||||||||||||||||||||||||||||||||||
| Theorem | wrdexi 11092 | The set of words over a set is a set, inference form. (Contributed by AV, 23-May-2021.) | |||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 ∈ V ⇒ ⊢ Word 𝑆 ∈ V | |||||||||||||||||||||||||||||||||||||
| Theorem | wrdsymbcl 11093 | A symbol within a word over an alphabet belongs to the alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝐼) ∈ 𝑉) | |||||||||||||||||||||||||||||||||||||
| Theorem | wrdfn 11094 | A word is a function with a zero-based sequence of integers as domain. (Contributed by Alexander van der Vekens, 13-Apr-2018.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑊 ∈ Word 𝑆 → 𝑊 Fn (0..^(♯‘𝑊))) | |||||||||||||||||||||||||||||||||||||
| Theorem | wrdv 11095 | A word over an alphabet is a word over the universal class. (Contributed by AV, 8-Feb-2021.) (Proof shortened by JJ, 18-Nov-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑊 ∈ Word 𝑉 → 𝑊 ∈ Word V) | |||||||||||||||||||||||||||||||||||||
| Theorem | wrdlndm 11096 | The length of a word is not in the domain of the word (regarded as a function). (Contributed by AV, 3-Mar-2021.) (Proof shortened by JJ, 18-Nov-2022.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∉ dom 𝑊) | |||||||||||||||||||||||||||||||||||||
| Theorem | iswrdsymb 11097* | An arbitrary word is a word over an alphabet if all of its symbols belong to the alphabet. (Contributed by AV, 23-Jan-2021.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝑊 ∈ Word V ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ∈ 𝑉) → 𝑊 ∈ Word 𝑉) | |||||||||||||||||||||||||||||||||||||
| Theorem | wrdfin 11098 | A word is a finite set. (Contributed by Stefan O'Rear, 2-Nov-2015.) (Proof shortened by AV, 18-Nov-2018.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑊 ∈ Word 𝑆 → 𝑊 ∈ Fin) | |||||||||||||||||||||||||||||||||||||
| Theorem | lennncl 11099 | The length of a nonempty word is a positive integer. (Contributed by Mario Carneiro, 1-Oct-2015.) | |||||||||||||||||||||||||||||||||||
| ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |||||||||||||||||||||||||||||||||||||
| Theorem | wrdffz 11100 | A word is a function from a finite interval of integers. (Contributed by AV, 10-Feb-2021.) | |||||||||||||||||||||||||||||||||||
| ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0...((♯‘𝑊) − 1))⟶𝑆) | |||||||||||||||||||||||||||||||||||||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |