HomeHome Intuitionistic Logic Explorer
Theorem List (p. 111 of 165)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11001-11100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempermnn 11001 The number of permutations of 𝑁𝑅 objects from a collection of 𝑁 objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.)
(𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ)
 
Theorembcnm1 11002 The binomial coefficent of (𝑁 − 1) is 𝑁. (Contributed by Scott Fenton, 16-May-2014.)
(𝑁 ∈ ℕ0 → (𝑁C(𝑁 − 1)) = 𝑁)
 
Theorem4bc3eq4 11003 The value of four choose three. (Contributed by Scott Fenton, 11-Jun-2016.)
(4C3) = 4
 
Theorem4bc2eq6 11004 The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.)
(4C2) = 6
 
4.6.10  The ` # ` (set size) function
 
Syntaxchash 11005 Extend the definition of a class to include the set size function.
class
 
Definitiondf-ihash 11006* Define the set size function , which gives the cardinality of a finite set as a member of 0, and assigns all infinite sets the value +∞. For example, (♯‘{0, 1, 2}) = 3.

Since we don't know that an arbitrary set is either finite or infinite (by inffiexmid 7076), the behavior beyond finite sets is not as useful as it might appear. For example, we wouldn't expect to be able to define this function in a meaningful way on 𝒫 1o, which cannot be shown to be finite (per pw1fin 7080).

Note that we use the sharp sign () for this function and we use the different character octothorpe (#) for the apartness relation (see df-ap 8737). We adopt the former notation from Corollary 8.2.4 of [AczelRathjen], p. 80 (although that work only defines it for finite sets).

This definition (in terms of and ) is not taken directly from the literature, but for finite sets should be equivalent to the conventional definition that the size of a finite set is the unique natural number which is equinumerous to the given set. (Contributed by Jim Kingdon, 19-Feb-2022.)

♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
 
Theoremhashinfuni 11007* The ordinal size of an infinite set is ω. (Contributed by Jim Kingdon, 20-Feb-2022.)
(ω ≼ 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = ω)
 
Theoremhashinfom 11008 The value of the function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.)
(ω ≼ 𝐴 → (♯‘𝐴) = +∞)
 
Theoremhashennnuni 11009* The ordinal size of a set equinumerous to an element of ω is that element of ω. (Contributed by Jim Kingdon, 20-Feb-2022.)
((𝑁 ∈ ω ∧ 𝑁𝐴) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = 𝑁)
 
Theoremhashennn 11010* The size of a set equinumerous to an element of ω. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝑁 ∈ ω ∧ 𝑁𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
 
Theoremhashcl 11011 Closure of the function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.)
(𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
 
Theoremhashfiv01gt1 11012 The size of a finite set is either 0 or 1 or greater than 1. (Contributed by Jim Kingdon, 21-Feb-2022.)
(𝑀 ∈ Fin → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
 
Theoremhashfz1 11013 The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
(𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
 
Theoremhashen 11014 Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴𝐵))
 
Theoremhasheqf1o 11015* The size of two finite sets is equal if and only if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
 
Theoremfiinfnf1o 11016* There is no bijection between a finite set and an infinite set. By infnfi 7065 the theorem would also hold if "infinite" were expressed as ω ≼ 𝐵. (Contributed by Alexander van der Vekens, 25-Dec-2017.)
((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
 
Theoremfihasheqf1oi 11017 The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → (♯‘𝐴) = (♯‘𝐵))
 
Theoremfihashf1rn 11018 The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))
 
Theoremfihasheqf1od 11019 The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐹:𝐴1-1-onto𝐵)       (𝜑 → (♯‘𝐴) = (♯‘𝐵))
 
Theoremfz1eqb 11020 Two possibly-empty 1-based finite sets of sequential integers are equal iff their endpoints are equal. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 29-Mar-2014.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((1...𝑀) = (1...𝑁) ↔ 𝑀 = 𝑁))
 
Theoremfiltinf 11021 The size of an infinite set is greater than the size of a finite set. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝐴 ∈ Fin ∧ ω ≼ 𝐵) → (♯‘𝐴) < (♯‘𝐵))
 
Theoremisfinite4im 11022 A finite set is equinumerous to the range of integers from one up to the hash value of the set. (Contributed by Jim Kingdon, 22-Feb-2022.)
(𝐴 ∈ Fin → (1...(♯‘𝐴)) ≈ 𝐴)
 
Theoremfihasheq0 11023 Two ways of saying a finite set is empty. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 27-Jul-2014.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
(𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
 
Theoremfihashneq0 11024 Two ways of saying a finite set is not empty. Also, "A is inhabited" would be equivalent by fin0 7055. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
(𝐴 ∈ Fin → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅))
 
Theoremhashnncl 11025 Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.)
(𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
 
Theoremhash0 11026 The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.)
(♯‘∅) = 0
 
Theoremfihashelne0d 11027 A finite set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝐵𝐴)    &   (𝜑𝐴 ∈ Fin)       (𝜑 → ¬ (♯‘𝐴) = 0)
 
Theoremhashsng 11028 The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.)
(𝐴𝑉 → (♯‘{𝐴}) = 1)
 
Theoremfihashen1 11029 A finite set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
(𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o))
 
Theoremfihashfn 11030 A function on a finite set is equinumerous to its domain. (Contributed by Mario Carneiro, 12-Mar-2015.) (Intuitionized by Jim Kingdon, 24-Feb-2022.)
((𝐹 Fn 𝐴𝐴 ∈ Fin) → (♯‘𝐹) = (♯‘𝐴))
 
Theoremfseq1hash 11031 The value of the size function on a finite 1-based sequence. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 12-Mar-2015.)
((𝑁 ∈ ℕ0𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁)
 
Theoremomgadd 11032 Mapping ordinal addition to integer addition. (Contributed by Jim Kingdon, 24-Feb-2022.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵)))
 
Theoremfihashdom 11033 Dominance relation for the size function. (Contributed by Jim Kingdon, 24-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
 
Theoremhashunlem 11034 Lemma for hashun 11035. Ordinal size of the union. (Contributed by Jim Kingdon, 25-Feb-2022.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑 → (𝐴𝐵) = ∅)    &   (𝜑𝑁 ∈ ω)    &   (𝜑𝑀 ∈ ω)    &   (𝜑𝐴𝑁)    &   (𝜑𝐵𝑀)       (𝜑 → (𝐴𝐵) ≈ (𝑁 +o 𝑀))
 
Theoremhashun 11035 The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
 
Theorem1elfz0hash 11036 1 is an element of the finite set of sequential nonnegative integers bounded by the size of a nonempty finite set. (Contributed by AV, 9-May-2020.)
((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 1 ∈ (0...(♯‘𝐴)))
 
Theoremhashunsng 11037 The size of the union of a finite set with a disjoint singleton is one more than the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.)
(𝐵𝑉 → ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) + 1)))
 
Theoremhashprg 11038 The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV, 18-Sep-2021.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
 
Theoremprhash2ex 11039 There is (at least) one set with two different elements: the unordered pair containing 0 and 1. In contrast to pr0hash2ex 11045, numbers are used instead of sets because their representation is shorter (and more comprehensive). (Contributed by AV, 29-Jan-2020.)
(♯‘{0, 1}) = 2
 
Theoremhashp1i 11040 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
𝐴 ∈ ω    &   𝐵 = suc 𝐴    &   (♯‘𝐴) = 𝑀    &   (𝑀 + 1) = 𝑁       (♯‘𝐵) = 𝑁
 
Theoremhash1 11041 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
(♯‘1o) = 1
 
Theoremhash2 11042 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
(♯‘2o) = 2
 
Theoremhash3 11043 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
(♯‘3o) = 3
 
Theoremhash4 11044 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
(♯‘4o) = 4
 
Theorempr0hash2ex 11045 There is (at least) one set with two different elements: the unordered pair containing the empty set and the singleton containing the empty set. (Contributed by AV, 29-Jan-2020.)
(♯‘{∅, {∅}}) = 2
 
Theoremfihashss 11046 The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐵) ≤ (♯‘𝐴))
 
Theoremfiprsshashgt1 11047 The size of a superset of a proper unordered pair is greater than 1. (Contributed by AV, 6-Feb-2021.)
(((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶)))
 
Theoremfihashssdif 11048 The size of the difference of a finite set and a finite subset is the set's size minus the subset's. (Contributed by Jim Kingdon, 31-May-2022.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) − (♯‘𝐵)))
 
Theoremhashdifsn 11049 The size of the difference of a finite set and a singleton subset is the set's size minus 1. (Contributed by Alexander van der Vekens, 6-Jan-2018.)
((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1))
 
Theoremhashdifpr 11050 The size of the difference of a finite set and a proper ordered pair subset is the set's size minus 2. (Contributed by AV, 16-Dec-2020.)
((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2))
 
Theoremhashfz 11051 Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.)
(𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵𝐴) + 1))
 
Theoremhashfzo 11052 Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵𝐴))
 
Theoremhashfzo0 11053 Cardinality of a half-open set of integers based at zero. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(𝐵 ∈ ℕ0 → (♯‘(0..^𝐵)) = 𝐵)
 
Theoremhashfzp1 11054 Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.)
(𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴))
 
Theoremhashfz0 11055 Value of the numeric cardinality of a nonempty range of nonnegative integers. (Contributed by Alexander van der Vekens, 21-Jul-2018.)
(𝐵 ∈ ℕ0 → (♯‘(0...𝐵)) = (𝐵 + 1))
 
Theoremhashxp 11056 The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
 
Theoremfimaxq 11057* A finite set of rational numbers has a maximum. (Contributed by Jim Kingdon, 6-Sep-2022.)
((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
 
Theoremfiubm 11058* Lemma for fiubz 11059 and fiubnn 11060. A general form of those theorems. (Contributed by Jim Kingdon, 29-Oct-2024.)
(𝜑𝐴𝐵)    &   (𝜑𝐵 ⊆ ℚ)    &   (𝜑𝐶𝐵)    &   (𝜑𝐴 ∈ Fin)       (𝜑 → ∃𝑥𝐵𝑦𝐴 𝑦𝑥)
 
Theoremfiubz 11059* A finite set of integers has an upper bound which is an integer. (Contributed by Jim Kingdon, 29-Oct-2024.)
((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
 
Theoremfiubnn 11060* A finite set of natural numbers has an upper bound which is a a natural number. (Contributed by Jim Kingdon, 29-Oct-2024.)
((𝐴 ⊆ ℕ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℕ ∀𝑦𝐴 𝑦𝑥)
 
Theoremresunimafz0 11061 The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.)
(𝜑 → Fun 𝐼)    &   (𝜑𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)    &   (𝜑𝑁 ∈ (0..^(♯‘𝐹)))       (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))
 
Theoremfnfz0hash 11062 The size of a function on a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 25-Jun-2018.)
((𝑁 ∈ ℕ0𝐹 Fn (0...𝑁)) → (♯‘𝐹) = (𝑁 + 1))
 
Theoremffz0hash 11063 The size of a function on a finite set of sequential nonnegative integers equals the upper bound of the sequence increased by 1. (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Proof shortened by AV, 11-Apr-2021.)
((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶𝐵) → (♯‘𝐹) = (𝑁 + 1))
 
Theoremffzo0hash 11064 The size of a function on a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 25-Mar-2018.)
((𝑁 ∈ ℕ0𝐹 Fn (0..^𝑁)) → (♯‘𝐹) = 𝑁)
 
Theoremfnfzo0hash 11065 The size of a function on a half-open range of nonnegative integers equals the upper bound of this range. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Proof shortened by AV, 11-Apr-2021.)
((𝑁 ∈ ℕ0𝐹:(0..^𝑁)⟶𝐵) → (♯‘𝐹) = 𝑁)
 
Theoremhashfacen 11066* The number of bijections between two sets is a cardinal invariant. (Contributed by Mario Carneiro, 21-Jan-2015.)
((𝐴𝐵𝐶𝐷) → {𝑓𝑓:𝐴1-1-onto𝐶} ≈ {𝑓𝑓:𝐵1-1-onto𝐷})
 
Theoremleisorel 11067 Version of isorel 5938 for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro, 9-Sep-2015.)
((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))
 
Theoremzfz1isolemsplit 11068 Lemma for zfz1iso 11071. Removing one element from an integer range. (Contributed by Jim Kingdon, 8-Sep-2022.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑀𝑋)       (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}))
 
Theoremzfz1isolemiso 11069* Lemma for zfz1iso 11071. Adding one element to the order isomorphism. (Contributed by Jim Kingdon, 8-Sep-2022.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ⊆ ℤ)    &   (𝜑𝑀𝑋)    &   (𝜑 → ∀𝑧𝑋 𝑧𝑀)    &   (𝜑𝐺 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))    &   (𝜑𝐴 ∈ (1...(♯‘𝑋)))    &   (𝜑𝐵 ∈ (1...(♯‘𝑋)))       (𝜑 → (𝐴 < 𝐵 ↔ ((𝐺 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝐴) < ((𝐺 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝐵)))
 
Theoremzfz1isolem1 11070* Lemma for zfz1iso 11071. Existence of an order isomorphism given the existence of shorter isomorphisms. (Contributed by Jim Kingdon, 7-Sep-2022.)
(𝜑𝐾 ∈ ω)    &   (𝜑 → ∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)))    &   (𝜑𝑋 ⊆ ℤ)    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≈ suc 𝐾)    &   (𝜑𝑀𝑋)    &   (𝜑 → ∀𝑧𝑋 𝑧𝑀)       (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))
 
Theoremzfz1iso 11071* A finite set of integers has an order isomorphism to a one-based finite sequence. (Contributed by Jim Kingdon, 3-Sep-2022.)
((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))
 
Theoremseq3coll 11072* The function 𝐹 contains a sparse set of nonzero values to be summed. The function 𝐺 is an order isomorphism from the set of nonzero values of 𝐹 to a 1-based finite sequence, and 𝐻 collects these nonzero values together. Under these conditions, the sum over the values in 𝐻 yields the same result as the sum over the original set 𝐹. (Contributed by Mario Carneiro, 2-Apr-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
((𝜑𝑘𝑆) → (𝑍 + 𝑘) = 𝑘)    &   ((𝜑𝑘𝑆) → (𝑘 + 𝑍) = 𝑘)    &   ((𝜑 ∧ (𝑘𝑆𝑛𝑆)) → (𝑘 + 𝑛) ∈ 𝑆)    &   (𝜑𝑍𝑆)    &   (𝜑𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴))    &   (𝜑𝑁 ∈ (1...(♯‘𝐴)))    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐻𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹𝑘) = 𝑍)    &   ((𝜑𝑛 ∈ (1...(♯‘𝐴))) → (𝐻𝑛) = (𝐹‘(𝐺𝑛)))       (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺𝑁)) = (seq1( + , 𝐻)‘𝑁))
 
4.6.10.1  Proper unordered pairs and triples (sets of size 2 and 3)
 
Theoremhash2en 11073 Two equivalent ways to say a set has two elements. (Contributed by Jim Kingdon, 4-Dec-2025.)
(𝑉 ≈ 2o ↔ (𝑉 ∈ Fin ∧ (♯‘𝑉) = 2))
 
Theoremhashdmprop2dom 11074 A class which contains two ordered pairs with different first components has at least two elements. (Contributed by AV, 12-Nov-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑌)    &   (𝜑𝐹𝑍)    &   (𝜑𝐴𝐵)    &   (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ 𝐹)       (𝜑 → 2o ≼ dom 𝐹)
 
4.6.10.2  Functions with a domain containing at least two different elements
 
Theoremfundm2domnop0 11075 A function with a domain containing (at least) two different elements is not an ordered pair. This theorem (which requires that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 13053. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Proof shortened by AV, 15-Nov-2021.)
((Fun (𝐺 ∖ {∅}) ∧ 2o ≼ dom 𝐺) → ¬ 𝐺 ∈ (V × V))
 
Theoremfundm2domnop 11076 A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 12-Oct-2020.) (Proof shortened by AV, 9-Jun-2021.)
((Fun 𝐺 ∧ 2o ≼ dom 𝐺) → ¬ 𝐺 ∈ (V × V))
 
Theoremfun2dmnop0 11077 A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop 11078 (with the less restrictive requirement that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 13053. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.)
𝐴 ∈ V    &   𝐵 ∈ V       ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V))
 
Theoremfun2dmnop 11078 A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 9-Jun-2021.)
𝐴 ∈ V    &   𝐵 ∈ V       ((Fun 𝐺𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V))
 
4.7  Words over a set

This section is about words (or strings) over a set (alphabet) defined as finite sequences of symbols (or characters) being elements of the alphabet. Although it is often required that the underlying set/alphabet be nonempty, finite and not a proper class, these restrictions are not made in the current definition df-word 11080. Note that the empty word (i.e., the empty set) is the only word over an empty alphabet, see 0wrd0 11105. The set Word 𝑆 of words over 𝑆 is the free monoid over 𝑆, where the monoid law is concatenation and the monoid unit is the empty word. Besides the definition of words themselves, several operations on words are defined in this section:

NameReferenceExplanationExample Remarks
Length (or size) of a word df-ihash 11006: (♯‘𝑊) Operation which determines the number of the symbols within the word. 𝑊:(0..^𝑁)⟶𝑆 → (𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 𝑁 This is not a special definition for words, but for arbitrary sets.
First symbol of a word df-fv 5326: (𝑊‘0) Operation which extracts the first symbol of a word. The result is the symbol at the first place in the sequence representing the word. 𝑊:(0..^1)⟶𝑆 → (𝑊 ∈ Word 𝑆 ∧ (𝑊‘0) ∈ 𝑆 This is not a special definition for words, but for arbitrary functions with a half-open range of nonnegative integers as domain.
Last symbol of a word df-lsw 11125: (lastS‘𝑊) Operation which extracts the last symbol of a word. The result is the symbol at the last place in the sequence representing the word. 𝑊:(0..^3)⟶𝑆 → (𝑊 ∈ Word 𝑆 ∧ (lastS‘𝑊) = (𝑊‘2) Note that the index of the last symbol is less by 1 than the length of the word.
Subword (or substring) of a word df-substr 11186: (𝑊 substr ⟨𝐼, 𝐽⟩) Operation which extracts a portion of a word. The result is a consecutive, reindexed part of the sequence representing the word. 𝑊:(0..^3)⟶𝑆 → (𝑊 ∈ Word 𝑆 ∧ (𝑊 substr ⟨1, 2⟩) ∈ Word 𝑆 ∧ (♯‘(𝑊 substr ⟨1, 2⟩)) = 1 Note that the last index of the range defining the subword is greater by 1 than the index of the last symbol of the subword in the sequence of the original word.
Concatenation of two words df-concat 11134: (𝑊 ++ 𝑈) Operation combining two words to one new word. The result is a combined, reindexed sequence build from the sequences representing the two words. (𝑊 ∈ Word 𝑆𝑈 ∈ Word 𝑆) → (♯‘(𝑊 ++ 𝑈)) = ((♯‘𝑊) + (♯‘𝑈)) Note that the index of the first symbol of the second concatenated word is the length of the first word in the concatenation.
Singleton word df-s1 11157: ⟨“𝑆”⟩ Constructor building a word of length 1 from a symbol. (♯‘⟨“𝑆”⟩) = 1
Conventions:
  • Words are usually represented by class variable 𝑊, or if two words are involved, by 𝑊 and 𝑈 or by 𝐴 and 𝐵.
  • The alphabets are usually represented by class variable 𝑉 (because any arbitrary set can be an alphabet), sometimes also by 𝑆 (especially as codomain of the function representing a word, because the alphabet is the set of symbols).
  • The symbols are usually represented by class variables 𝑆 or 𝐴, or if two symbols are involved, by 𝑆 and 𝑇 or by 𝐴 and 𝐵.
  • The indices of the sequence representing a word are usually represented by class variable 𝐼, if two indices are involved (especially for subwords) by 𝐼 and 𝐽, or by 𝑀 and 𝑁.
  • The length of a word is usually represented by class variables 𝑁 or 𝐿.
  • The number of positions by which to cyclically shift a word is usually represented by class variables 𝑁 or 𝐿.
 
4.7.1  Definitions and basic theorems
 
Syntaxcword 11079 Syntax for the Word operator.
class Word 𝑆
 
Definitiondf-word 11080* Define the class of words over a set. A word (sometimes also called a string) is a finite sequence of symbols from a set (alphabet) 𝑆. Definition in Section 9.1 of [AhoHopUll] p. 318. The domain is forced to be an initial segment of 0 so that two words with the same symbols in the same order be equal. The set Word 𝑆 is sometimes denoted by S*, using the Kleene star, although the Kleene star, or Kleene closure, is sometimes reserved to denote an operation on languages. The set Word 𝑆 equipped with concatenation is the free monoid over 𝑆, and the monoid unit is the empty word. (Contributed by FL, 14-Jan-2014.) (Revised by Stefan O'Rear, 14-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
 
Theoremiswrd 11081* Property of being a word over a set with an existential quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.)
(𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
 
Theoremwrdval 11082* Value of the set of words over a set. (Contributed by Stefan O'Rear, 10-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
(𝑆𝑉 → Word 𝑆 = 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)))
 
Theoremlencl 11083 The length of a word is a nonnegative integer. This corresponds to the definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 27-Aug-2015.)
(𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0)
 
Theoremiswrdinn0 11084 A zero-based sequence is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 16-Aug-2025.)
((𝑊:(0..^𝐿)⟶𝑆𝐿 ∈ ℕ0) → 𝑊 ∈ Word 𝑆)
 
Theoremwrdf 11085 A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(𝑊 ∈ Word 𝑆𝑊:(0..^(♯‘𝑊))⟶𝑆)
 
Theoremiswrdiz 11086 A zero-based sequence is a word. In iswrdinn0 11084 we can specify a length as an nonnegative integer. However, it will occasionally be helpful to allow a negative length, as well as zero, to specify an empty sequence. (Contributed by Jim Kingdon, 18-Aug-2025.)
((𝑊:(0..^𝐿)⟶𝑆𝐿 ∈ ℤ) → 𝑊 ∈ Word 𝑆)
 
Theoremwrddm 11087 The indices of a word (i.e. its domain regarded as function) are elements of an open range of nonnegative integers (of length equal to the length of the word). (Contributed by AV, 2-May-2020.)
(𝑊 ∈ Word 𝑆 → dom 𝑊 = (0..^(♯‘𝑊)))
 
Theoremsswrd 11088 The set of words respects ordering on the base set. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.)
(𝑆𝑇 → Word 𝑆 ⊆ Word 𝑇)
 
Theoremsnopiswrd 11089 A singleton of an ordered pair (with 0 as first component) is a word. (Contributed by AV, 23-Nov-2018.) (Proof shortened by AV, 18-Apr-2021.)
(𝑆𝑉 → {⟨0, 𝑆⟩} ∈ Word 𝑉)
 
Theoremwrdexg 11090 The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by JJ, 18-Nov-2022.)
(𝑆𝑉 → Word 𝑆 ∈ V)
 
Theoremwrdexb 11091 The set of words over a set is a set, bidirectional version. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.)
(𝑆 ∈ V ↔ Word 𝑆 ∈ V)
 
Theoremwrdexi 11092 The set of words over a set is a set, inference form. (Contributed by AV, 23-May-2021.)
𝑆 ∈ V       Word 𝑆 ∈ V
 
Theoremwrdsymbcl 11093 A symbol within a word over an alphabet belongs to the alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018.)
((𝑊 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊𝐼) ∈ 𝑉)
 
Theoremwrdfn 11094 A word is a function with a zero-based sequence of integers as domain. (Contributed by Alexander van der Vekens, 13-Apr-2018.)
(𝑊 ∈ Word 𝑆𝑊 Fn (0..^(♯‘𝑊)))
 
Theoremwrdv 11095 A word over an alphabet is a word over the universal class. (Contributed by AV, 8-Feb-2021.) (Proof shortened by JJ, 18-Nov-2022.)
(𝑊 ∈ Word 𝑉𝑊 ∈ Word V)
 
Theoremwrdlndm 11096 The length of a word is not in the domain of the word (regarded as a function). (Contributed by AV, 3-Mar-2021.) (Proof shortened by JJ, 18-Nov-2022.)
(𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∉ dom 𝑊)
 
Theoremiswrdsymb 11097* An arbitrary word is a word over an alphabet if all of its symbols belong to the alphabet. (Contributed by AV, 23-Jan-2021.)
((𝑊 ∈ Word V ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ∈ 𝑉) → 𝑊 ∈ Word 𝑉)
 
Theoremwrdfin 11098 A word is a finite set. (Contributed by Stefan O'Rear, 2-Nov-2015.) (Proof shortened by AV, 18-Nov-2018.)
(𝑊 ∈ Word 𝑆𝑊 ∈ Fin)
 
Theoremlennncl 11099 The length of a nonempty word is a positive integer. (Contributed by Mario Carneiro, 1-Oct-2015.)
((𝑊 ∈ Word 𝑆𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
 
Theoremwrdffz 11100 A word is a function from a finite interval of integers. (Contributed by AV, 10-Feb-2021.)
(𝑊 ∈ Word 𝑆𝑊:(0...((♯‘𝑊) − 1))⟶𝑆)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >