Theorem List for Intuitionistic Logic Explorer - 11001-11100 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| 4.7 Words over a set
This section is about words (or strings) over a set (alphabet) defined
as finite sequences of symbols (or characters) being elements of the
alphabet. Although it is often required that the underlying set/alphabet be
nonempty, finite and not a proper class, these restrictions are not made in
the current definition df-word 11002. Note that the empty word ∅ (i.e.,
the empty set) is the only word over an empty alphabet, see 0wrd0 11027.
The set Word 𝑆 of words over 𝑆 is the free monoid over 𝑆, where
the monoid law is concatenation and the monoid unit is the empty word.
Besides the definition of words themselves, several operations on words are
defined in this section:
| Name | Reference | Explanation | Example |
Remarks |
| Length (or size) of a word | df-ihash 10928: (♯‘𝑊) |
Operation which determines the number of the symbols
within the word. |
𝑊:(0..^𝑁)⟶𝑆 → (𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 𝑁 |
This is not a special definition for words,
but for arbitrary sets. |
| First symbol of a word | df-fv 5284: (𝑊‘0) |
Operation which extracts the first symbol of a word. The result is the
symbol at the first place in the sequence representing the word. |
𝑊:(0..^1)⟶𝑆 → (𝑊 ∈ Word 𝑆 ∧ (𝑊‘0) ∈ 𝑆 |
This is not a special definition for words,
but for arbitrary functions with a half-open range of nonnegative
integers as domain. |
| Last symbol of a word | df-lsw 11046: (lastS‘𝑊) |
Operation which extracts the last symbol of a word. The result is the
symbol at the last place in the sequence representing the word. |
𝑊:(0..^3)⟶𝑆 → (𝑊 ∈ Word 𝑆 ∧ (lastS‘𝑊) = (𝑊‘2) |
Note that the index of the last symbol is less by 1 than the length of
the word. |
| Subword (or substring) of a word |
df-substr 11107: (𝑊 substr 〈𝐼, 𝐽〉) |
Operation which extracts a portion of a word. The result is a
consecutive, reindexed part of the sequence representing the word. |
𝑊:(0..^3)⟶𝑆 → (𝑊 ∈ Word 𝑆 ∧ (𝑊 substr 〈1, 2〉) ∈ Word 𝑆 ∧ (♯‘(𝑊 substr 〈1, 2〉)) = 1 |
Note that the last index of the range defining the subword is greater
by 1 than the index of the last symbol of the subword in the sequence
of the original word. |
| Concatenation of two words |
df-concat 11055: (𝑊 ++ 𝑈) |
Operation combining two words to one new word. The result is a
combined, reindexed sequence build from the sequences representing
the two words. |
(𝑊 ∈ Word 𝑆 ∧ 𝑈 ∈ Word 𝑆) → (♯‘(𝑊 ++ 𝑈)) = ((♯‘𝑊) + (♯‘𝑈)) |
Note that the index of the first symbol of the second concatenated
word is the length of the first word in the concatenation. |
| Singleton word |
df-s1 11078: 〈“𝑆”〉 |
Constructor building a word of length 1 from a symbol. |
(♯‘〈“𝑆”〉) = 1 |
|
Conventions:
- Words are usually represented by class variable 𝑊, or if two words
are involved, by 𝑊 and 𝑈 or by 𝐴 and 𝐵.
- The alphabets are usually represented by class variable 𝑉 (because
any arbitrary set can be an alphabet), sometimes also by 𝑆 (especially
as codomain of the function representing a word, because the alphabet is the
set of symbols).
- The symbols are usually represented by class variables 𝑆 or 𝐴,
or if two symbols are involved, by 𝑆 and 𝑇 or by 𝐴 and 𝐵.
- The indices of the sequence representing a word are usually represented
by class variable 𝐼, if two indices are involved (especially for
subwords) by 𝐼 and 𝐽, or by 𝑀 and 𝑁.
- The length of a word is usually represented by class variables 𝑁
or 𝐿.
- The number of positions by which to cyclically shift a word is usually
represented by class variables 𝑁 or 𝐿.
|
| |
| 4.7.1 Definitions and basic
theorems
|
| |
| Syntax | cword 11001 |
Syntax for the Word operator.
|
| class Word 𝑆 |
| |
| Definition | df-word 11002* |
Define the class of words over a set. A word (sometimes also called a
string) is a finite sequence of symbols from a set (alphabet)
𝑆.
Definition in Section 9.1 of [AhoHopUll] p. 318. The domain is forced
to be an initial segment of ℕ0
so that two words with the same
symbols in the same order be equal. The set Word 𝑆 is sometimes
denoted by S*, using the Kleene star, although the Kleene star, or
Kleene closure, is sometimes reserved to denote an operation on
languages. The set Word 𝑆 equipped with concatenation is the
free
monoid over 𝑆, and the monoid unit is the empty
word. (Contributed
by FL, 14-Jan-2014.) (Revised by Stefan O'Rear, 14-Aug-2015.) (Revised
by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} |
| |
| Theorem | iswrd 11003* |
Property of being a word over a set with an existential quantifier over
the length. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by
Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.)
|
| ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
| |
| Theorem | wrdval 11004* |
Value of the set of words over a set. (Contributed by Stefan O'Rear,
10-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 = ∪
𝑙 ∈
ℕ0 (𝑆
↑𝑚 (0..^𝑙))) |
| |
| Theorem | lencl 11005 |
The length of a word is a nonnegative integer. This corresponds to the
definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan
O'Rear, 27-Aug-2015.)
|
| ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈
ℕ0) |
| |
| Theorem | iswrdinn0 11006 |
A zero-based sequence is a word. (Contributed by Stefan O'Rear,
15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Revised by
Jim Kingdon, 16-Aug-2025.)
|
| ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℕ0) → 𝑊 ∈ Word 𝑆) |
| |
| Theorem | wrdf 11007 |
A word is a zero-based sequence with a recoverable upper limit.
(Contributed by Stefan O'Rear, 15-Aug-2015.)
|
| ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| |
| Theorem | iswrdiz 11008 |
A zero-based sequence is a word. In iswrdinn0 11006 we can specify a length
as an nonnegative integer. However, it will occasionally be helpful to
allow a negative length, as well as zero, to specify an empty sequence.
(Contributed by Jim Kingdon, 18-Aug-2025.)
|
| ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) → 𝑊 ∈ Word 𝑆) |
| |
| Theorem | wrddm 11009 |
The indices of a word (i.e. its domain regarded as function) are elements
of an open range of nonnegative integers (of length equal to the length of
the word). (Contributed by AV, 2-May-2020.)
|
| ⊢ (𝑊 ∈ Word 𝑆 → dom 𝑊 = (0..^(♯‘𝑊))) |
| |
| Theorem | sswrd 11010 |
The set of words respects ordering on the base set. (Contributed by
Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
(Proof shortened by AV, 13-May-2020.)
|
| ⊢ (𝑆 ⊆ 𝑇 → Word 𝑆 ⊆ Word 𝑇) |
| |
| Theorem | snopiswrd 11011 |
A singleton of an ordered pair (with 0 as first component) is a word.
(Contributed by AV, 23-Nov-2018.) (Proof shortened by AV,
18-Apr-2021.)
|
| ⊢ (𝑆 ∈ 𝑉 → {〈0, 𝑆〉} ∈ Word 𝑉) |
| |
| Theorem | wrdexg 11012 |
The set of words over a set is a set. (Contributed by Mario Carneiro,
26-Feb-2016.) (Proof shortened by JJ, 18-Nov-2022.)
|
| ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 ∈ V) |
| |
| Theorem | wrdexb 11013 |
The set of words over a set is a set, bidirectional version.
(Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV,
23-Nov-2018.)
|
| ⊢ (𝑆 ∈ V ↔ Word 𝑆 ∈ V) |
| |
| Theorem | wrdexi 11014 |
The set of words over a set is a set, inference form. (Contributed by
AV, 23-May-2021.)
|
| ⊢ 𝑆 ∈ V ⇒ ⊢ Word 𝑆 ∈ V |
| |
| Theorem | wrdsymbcl 11015 |
A symbol within a word over an alphabet belongs to the alphabet.
(Contributed by Alexander van der Vekens, 28-Jun-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝐼) ∈ 𝑉) |
| |
| Theorem | wrdfn 11016 |
A word is a function with a zero-based sequence of integers as domain.
(Contributed by Alexander van der Vekens, 13-Apr-2018.)
|
| ⊢ (𝑊 ∈ Word 𝑆 → 𝑊 Fn (0..^(♯‘𝑊))) |
| |
| Theorem | wrdv 11017 |
A word over an alphabet is a word over the universal class. (Contributed
by AV, 8-Feb-2021.) (Proof shortened by JJ, 18-Nov-2022.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → 𝑊 ∈ Word V) |
| |
| Theorem | wrdlndm 11018 |
The length of a word is not in the domain of the word (regarded as a
function). (Contributed by AV, 3-Mar-2021.) (Proof shortened by JJ,
18-Nov-2022.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∉ dom 𝑊) |
| |
| Theorem | iswrdsymb 11019* |
An arbitrary word is a word over an alphabet if all of its symbols
belong to the alphabet. (Contributed by AV, 23-Jan-2021.)
|
| ⊢ ((𝑊 ∈ Word V ∧ ∀𝑖 ∈
(0..^(♯‘𝑊))(𝑊‘𝑖) ∈ 𝑉) → 𝑊 ∈ Word 𝑉) |
| |
| Theorem | wrdfin 11020 |
A word is a finite set. (Contributed by Stefan O'Rear, 2-Nov-2015.)
(Proof shortened by AV, 18-Nov-2018.)
|
| ⊢ (𝑊 ∈ Word 𝑆 → 𝑊 ∈ Fin) |
| |
| Theorem | lennncl 11021 |
The length of a nonempty word is a positive integer. (Contributed by
Mario Carneiro, 1-Oct-2015.)
|
| ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈
ℕ) |
| |
| Theorem | wrdffz 11022 |
A word is a function from a finite interval of integers. (Contributed by
AV, 10-Feb-2021.)
|
| ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0...((♯‘𝑊) − 1))⟶𝑆) |
| |
| Theorem | wrdeq 11023 |
Equality theorem for the set of words. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ (𝑆 = 𝑇 → Word 𝑆 = Word 𝑇) |
| |
| Theorem | wrdeqi 11024 |
Equality theorem for the set of words, inference form. (Contributed by
AV, 23-May-2021.)
|
| ⊢ 𝑆 = 𝑇 ⇒ ⊢ Word 𝑆 = Word 𝑇 |
| |
| Theorem | iswrddm0 11025 |
A function with empty domain is a word. (Contributed by AV,
13-Oct-2018.)
|
| ⊢ (𝑊:∅⟶𝑆 → 𝑊 ∈ Word 𝑆) |
| |
| Theorem | wrd0 11026 |
The empty set is a word (the empty word, frequently denoted ε in
this context). This corresponds to the definition in Section 9.1 of
[AhoHopUll] p. 318. (Contributed by
Stefan O'Rear, 15-Aug-2015.) (Proof
shortened by AV, 13-May-2020.)
|
| ⊢ ∅ ∈ Word 𝑆 |
| |
| Theorem | 0wrd0 11027 |
The empty word is the only word over an empty alphabet. (Contributed by
AV, 25-Oct-2018.)
|
| ⊢ (𝑊 ∈ Word ∅ ↔ 𝑊 = ∅) |
| |
| Theorem | wrdsymb 11028 |
A word is a word over the symbols it consists of. (Contributed by AV,
1-Dec-2022.)
|
| ⊢ (𝑆 ∈ Word 𝐴 → 𝑆 ∈ Word (𝑆 “ (0..^(♯‘𝑆)))) |
| |
| Theorem | nfwrd 11029 |
Hypothesis builder for Word 𝑆. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ Ⅎ𝑥𝑆 ⇒ ⊢ Ⅎ𝑥Word 𝑆 |
| |
| Theorem | csbwrdg 11030* |
Class substitution for the symbols of a word. (Contributed by Alexander
van der Vekens, 15-Jul-2018.)
|
| ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌Word 𝑥 = Word 𝑆) |
| |
| Theorem | wrdnval 11031* |
Words of a fixed length are mappings from a fixed half-open integer
interval. (Contributed by Alexander van der Vekens, 25-Mar-2018.)
(Proof shortened by AV, 13-May-2020.)
|
| ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = (𝑉 ↑𝑚 (0..^𝑁))) |
| |
| Theorem | wrdmap 11032 |
Words as a mapping. (Contributed by Thierry Arnoux, 4-Mar-2020.)
|
| ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ↔ 𝑊 ∈ (𝑉 ↑𝑚 (0..^𝑁)))) |
| |
| Theorem | wrdsymb0 11033 |
A symbol at a position "outside" of a word. (Contributed by
Alexander van
der Vekens, 26-May-2018.) (Proof shortened by AV, 2-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → (𝑊‘𝐼) = ∅)) |
| |
| Theorem | wrdlenge1n0 11034 |
A word with length at least 1 is not empty. (Contributed by AV,
14-Oct-2018.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ ↔ 1 ≤
(♯‘𝑊))) |
| |
| Theorem | len0nnbi 11035 |
The length of a word is a positive integer iff the word is not empty.
(Contributed by AV, 22-Mar-2022.)
|
| ⊢ (𝑊 ∈ Word 𝑆 → (𝑊 ≠ ∅ ↔ (♯‘𝑊) ∈
ℕ)) |
| |
| Theorem | wrdlenge2n0 11036 |
A word with length at least 2 is not empty. (Contributed by AV,
18-Jun-2018.) (Proof shortened by AV, 14-Oct-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 𝑊 ≠ ∅) |
| |
| Theorem | wrdsymb1 11037 |
The first symbol of a nonempty word over an alphabet belongs to the
alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑊)) → (𝑊‘0) ∈ 𝑉) |
| |
| Theorem | wrdlen1 11038* |
A word of length 1 starts with a symbol. (Contributed by AV,
20-Jul-2018.) (Proof shortened by AV, 19-Oct-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → ∃𝑣 ∈ 𝑉 (𝑊‘0) = 𝑣) |
| |
| Theorem | fstwrdne 11039 |
The first symbol of a nonempty word is element of the alphabet for the
word. (Contributed by AV, 28-Sep-2018.) (Proof shortened by AV,
14-Oct-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊‘0) ∈ 𝑉) |
| |
| Theorem | fstwrdne0 11040 |
The first symbol of a nonempty word is element of the alphabet for the
word. (Contributed by AV, 29-Sep-2018.) (Proof shortened by AV,
14-Oct-2018.)
|
| ⊢ ((𝑁 ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)) → (𝑊‘0) ∈ 𝑉) |
| |
| Theorem | eqwrd 11041* |
Two words are equal iff they have the same length and the same symbol at
each position. (Contributed by AV, 13-Apr-2018.) (Revised by JJ,
30-Dec-2023.)
|
| ⊢ ((𝑈 ∈ Word 𝑆 ∧ 𝑊 ∈ Word 𝑇) → (𝑈 = 𝑊 ↔ ((♯‘𝑈) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈‘𝑖) = (𝑊‘𝑖)))) |
| |
| Theorem | elovmpowrd 11042* |
Implications for the value of an operation defined by the maps-to
notation with a class abstraction of words as a result having an
element. Note that 𝜑 may depend on 𝑧 as well as on 𝑣 and
𝑦. (Contributed by Alexander van der
Vekens, 15-Jul-2018.)
|
| ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) ⇒ ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
| |
| Theorem | wrdred1 11043 |
A word truncated by a symbol is a word. (Contributed by AV,
29-Jan-2021.)
|
| ⊢ (𝐹 ∈ Word 𝑆 → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word
𝑆) |
| |
| Theorem | wrdred1hash 11044 |
The length of a word truncated by a symbol. (Contributed by Alexander van
der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
|
| ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾
(0..^((♯‘𝐹)
− 1)))) = ((♯‘𝐹) − 1)) |
| |
| 4.7.2 Last symbol of a word
|
| |
| Syntax | clsw 11045 |
Extend class notation with the Last Symbol of a word.
|
| class lastS |
| |
| Definition | df-lsw 11046 |
Extract the last symbol of a word. May be not meaningful for other sets
which are not words. The name lastS (as
abbreviation of "lastSymbol")
is a compromise between usually used names for corresponding functions in
computer programs (as last() or lastChar()), the terminology used for
words in set.mm ("symbol" instead of "character") and
brevity ("lastS" is
shorter than "lastChar" and "lastSymbol"). Labels of
theorems about last
symbols of a word will contain the abbreviation "lsw" (Last
Symbol of a
Word). (Contributed by Alexander van der Vekens, 18-Mar-2018.)
|
| ⊢ lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1))) |
| |
| Theorem | lswwrd 11047 |
Extract the last symbol of a word. (Contributed by Alexander van der
Vekens, 18-Mar-2018.) (Revised by Jim Kingdon, 18-Dec-2025.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| |
| Theorem | lsw0 11048 |
The last symbol of an empty word does not exist. (Contributed by
Alexander van der Vekens, 19-Mar-2018.) (Proof shortened by AV,
2-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → (lastS‘𝑊) = ∅) |
| |
| Theorem | lsw0g 11049 |
The last symbol of an empty word does not exist. (Contributed by
Alexander van der Vekens, 11-Nov-2018.)
|
| ⊢ (lastS‘∅) =
∅ |
| |
| Theorem | lsw1 11050 |
The last symbol of a word of length 1 is the first symbol of this word.
(Contributed by Alexander van der Vekens, 19-Mar-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → (lastS‘𝑊) = (𝑊‘0)) |
| |
| Theorem | lswcl 11051 |
Closure of the last symbol: the last symbol of a nonempty word belongs to
the alphabet for the word. (Contributed by AV, 2-Aug-2018.) (Proof
shortened by AV, 29-Apr-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (lastS‘𝑊) ∈ 𝑉) |
| |
| Theorem | lswex 11052 |
Existence of the last symbol. The last symbol of a word is a set. See
lsw0g 11049 or lswcl 11051 if you want more specific results
for empty or
nonempty words, respectively. (Contributed by Jim Kingdon,
27-Dec-2025.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) ∈ V) |
| |
| Theorem | lswlgt0cl 11053 |
The last symbol of a nonempty word is an element of the alphabet for the
word. (Contributed by Alexander van der Vekens, 1-Oct-2018.) (Proof
shortened by AV, 29-Apr-2020.)
|
| ⊢ ((𝑁 ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)) → (lastS‘𝑊) ∈ 𝑉) |
| |
| 4.7.3 Concatenations of words
|
| |
| Syntax | cconcat 11054 |
Syntax for the concatenation operator.
|
| class ++ |
| |
| Definition | df-concat 11055* |
Define the concatenation operator which combines two words. Definition
in Section 9.1 of [AhoHopUll] p. 318.
(Contributed by FL, 14-Jan-2014.)
(Revised by Stefan O'Rear, 15-Aug-2015.)
|
| ⊢ ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈
(0..^(♯‘𝑠)),
(𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))))) |
| |
| Theorem | ccatfvalfi 11056* |
Value of the concatenation operator. (Contributed by Stefan O'Rear,
15-Aug-2015.)
|
| ⊢ ((𝑆 ∈ Fin ∧ 𝑇 ∈ Fin) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈
(0..^(♯‘𝑆)),
(𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
| |
| Theorem | ccatcl 11057 |
The concatenation of two words is a word. (Contributed by FL,
2-Feb-2014.) (Proof shortened by Stefan O'Rear, 15-Aug-2015.) (Proof
shortened by AV, 29-Apr-2020.)
|
| ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵) |
| |
| Theorem | ccatclab 11058 |
The concatenation of words over two sets is a word over the union of
those sets. (Contributed by Jim Kingdon, 19-Dec-2025.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word (𝐴 ∪ 𝐵)) |
| |
| Theorem | ccatlen 11059 |
The length of a concatenated word. (Contributed by Stefan O'Rear,
15-Aug-2015.) (Revised by JJ, 1-Jan-2024.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇))) |
| |
| Theorem | ccat0 11060 |
The concatenation of two words is empty iff the two words are empty.
(Contributed by AV, 4-Mar-2022.) (Revised by JJ, 18-Jan-2024.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) = ∅ ↔ (𝑆 = ∅ ∧ 𝑇 = ∅))) |
| |
| Theorem | ccatval1 11061 |
Value of a symbol in the left half of a concatenated word. (Contributed
by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro,
22-Sep-2015.) (Proof shortened by AV, 30-Apr-2020.) (Revised by JJ,
18-Jan-2024.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑆‘𝐼)) |
| |
| Theorem | ccatval2 11062 |
Value of a symbol in the right half of a concatenated word.
(Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario
Carneiro, 22-Sep-2015.)
|
| ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑇‘(𝐼 − (♯‘𝑆)))) |
| |
| Theorem | ccatval3 11063 |
Value of a symbol in the right half of a concatenated word, using an
index relative to the subword. (Contributed by Stefan O'Rear,
16-Aug-2015.) (Proof shortened by AV, 30-Apr-2020.)
|
| ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝐼 + (♯‘𝑆))) = (𝑇‘𝐼)) |
| |
| Theorem | elfzelfzccat 11064 |
An element of a finite set of sequential integers up to the length of a
word is an element of an extended finite set of sequential integers up to
the length of a concatenation of this word with another word.
(Contributed by Alexander van der Vekens, 28-Mar-2018.)
|
| ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(♯‘𝐴)) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))) |
| |
| Theorem | ccatvalfn 11065 |
The concatenation of two words is a function over the half-open integer
range having the sum of the lengths of the word as length. (Contributed
by Alexander van der Vekens, 30-Mar-2018.)
|
| ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵)))) |
| |
| Theorem | ccatsymb 11066 |
The symbol at a given position in a concatenated word. (Contributed by
AV, 26-May-2018.) (Proof shortened by AV, 24-Nov-2018.)
|
| ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (♯‘𝐴), (𝐴‘𝐼), (𝐵‘(𝐼 − (♯‘𝐴))))) |
| |
| Theorem | ccatfv0 11067 |
The first symbol of a concatenation of two words is the first symbol of
the first word if the first word is not empty. (Contributed by Alexander
van der Vekens, 22-Sep-2018.)
|
| ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 0 < (♯‘𝐴)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0)) |
| |
| Theorem | ccatval1lsw 11068 |
The last symbol of the left (nonempty) half of a concatenated word.
(Contributed by Alexander van der Vekens, 3-Oct-2018.) (Proof shortened
by AV, 1-May-2020.)
|
| ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐴 ≠ ∅) → ((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)) = (lastS‘𝐴)) |
| |
| Theorem | ccatval21sw 11069 |
The first symbol of the right (nonempty) half of a concatenated word.
(Contributed by AV, 23-Apr-2022.)
|
| ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0)) |
| |
| Theorem | ccatlid 11070 |
Concatenation of a word by the empty word on the left. (Contributed by
Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
|
| ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆) |
| |
| Theorem | ccatrid 11071 |
Concatenation of a word by the empty word on the right. (Contributed by
Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
|
| ⊢ (𝑆 ∈ Word 𝐵 → (𝑆 ++ ∅) = 𝑆) |
| |
| Theorem | ccatass 11072 |
Associative law for concatenation of words. (Contributed by Stefan
O'Rear, 15-Aug-2015.)
|
| ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝑈 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ++ 𝑈) = (𝑆 ++ (𝑇 ++ 𝑈))) |
| |
| Theorem | ccatrn 11073 |
The range of a concatenated word. (Contributed by Stefan O'Rear,
15-Aug-2015.)
|
| ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) = (ran 𝑆 ∪ ran 𝑇)) |
| |
| Theorem | ccatidid 11074 |
Concatenation of the empty word by the empty word. (Contributed by AV,
26-Mar-2022.)
|
| ⊢ (∅ ++ ∅) =
∅ |
| |
| Theorem | lswccatn0lsw 11075 |
The last symbol of a word concatenated with a nonempty word is the last
symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof
shortened by AV, 1-May-2020.)
|
| ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵)) |
| |
| Theorem | lswccat0lsw 11076 |
The last symbol of a word concatenated with the empty word is the last
symbol of the word. (Contributed by AV, 22-Oct-2018.) (Proof shortened
by AV, 1-May-2020.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘(𝑊 ++ ∅)) = (lastS‘𝑊)) |
| |
| 4.7.4 Singleton words
|
| |
| Syntax | cs1 11077 |
Syntax for the singleton word constructor.
|
| class 〈“𝐴”〉 |
| |
| Definition | df-s1 11078 |
Define the canonical injection from symbols to words. Although not
required, 𝐴 should usually be a set. Otherwise,
the singleton word
〈“𝐴”〉 would be the singleton
word consisting of the empty set, see
s1prc 11085, and not, as maybe expected, the empty word.
(Contributed by
Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} |
| |
| Theorem | s1val 11079 |
Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) |
| |
| Theorem | s1rn 11080 |
The range of a singleton word. (Contributed by Mario Carneiro,
18-Jul-2016.)
|
| ⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = {𝐴}) |
| |
| Theorem | s1eq 11081 |
Equality theorem for a singleton word. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| |
| Theorem | s1eqd 11082 |
Equality theorem for a singleton word. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| |
| Theorem | s1cl 11083 |
A singleton word is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV,
23-Nov-2018.)
|
| ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 ∈ Word 𝐵) |
| |
| Theorem | s1cld 11084 |
A singleton word is a word. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → 〈“𝐴”〉 ∈ Word 𝐵) |
| |
| Theorem | s1prc 11085 |
Value of a singleton word if the symbol is a proper class. (Contributed
by AV, 26-Mar-2022.)
|
| ⊢ (¬ 𝐴 ∈ V → 〈“𝐴”〉 =
〈“∅”〉) |
| |
| Theorem | s1leng 11086 |
Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ (𝐴 ∈ 𝑉 → (♯‘〈“𝐴”〉) =
1) |
| |
| Theorem | s1dmg 11087 |
The domain of a singleton word is a singleton. (Contributed by AV,
9-Jan-2020.)
|
| ⊢ (𝐴 ∈ 𝑆 → dom 〈“𝐴”〉 = {0}) |
| |
| Theorem | s1fv 11088 |
Sole symbol of a singleton word. (Contributed by Stefan O'Rear,
15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = 𝐴) |
| |
| Theorem | lsws1 11089 |
The last symbol of a singleton word is its symbol. (Contributed by AV,
22-Oct-2018.)
|
| ⊢ (𝐴 ∈ 𝑉 → (lastS‘〈“𝐴”〉) = 𝐴) |
| |
| Theorem | eqs1 11090 |
A word of length 1 is a singleton word. (Contributed by Stefan O'Rear,
23-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = 〈“(𝑊‘0)”〉) |
| |
| Theorem | wrdl1exs1 11091* |
A word of length 1 is a singleton word. (Contributed by AV,
24-Jan-2021.)
|
| ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 1) → ∃𝑠 ∈ 𝑆 𝑊 = 〈“𝑠”〉) |
| |
| Theorem | wrdl1s1 11092 |
A word of length 1 is a singleton word consisting of the first symbol of
the word. (Contributed by AV, 22-Jul-2018.) (Proof shortened by AV,
14-Oct-2018.)
|
| ⊢ (𝑆 ∈ 𝑉 → (𝑊 = 〈“𝑆”〉 ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆))) |
| |
| Theorem | s111 11093 |
The singleton word function is injective. (Contributed by Mario Carneiro,
1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ 𝑆 = 𝑇)) |
| |
| 4.7.5 Concatenations with singleton
words
|
| |
| Theorem | ccatws1cl 11094 |
The concatenation of a word with a singleton word is a word. (Contributed
by Alexander van der Vekens, 22-Sep-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑊 ++ 〈“𝑋”〉) ∈ Word 𝑉) |
| |
| Theorem | ccat2s1cl 11095 |
The concatenation of two singleton words is a word. (Contributed by
Alexander van der Vekens, 22-Sep-2018.)
|
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word
𝑉) |
| |
| Theorem | ccatws1leng 11096 |
The length of the concatenation of a word with a singleton word.
(Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV,
4-Mar-2022.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑌) → (♯‘(𝑊 ++ 〈“𝑋”〉)) = ((♯‘𝑊) + 1)) |
| |
| Theorem | ccatws1lenp1bg 11097 |
The length of a word is 𝑁 iff the length of the concatenation
of the
word with a singleton word is 𝑁 + 1. (Contributed by AV,
4-Mar-2022.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑌 ∧ 𝑁 ∈ ℕ0) →
((♯‘(𝑊 ++
〈“𝑋”〉)) = (𝑁 + 1) ↔ (♯‘𝑊) = 𝑁)) |
| |
| Theorem | ccatw2s1cl 11098 |
The concatenation of a word with two singleton words is a word.
(Contributed by Alexander van der Vekens, 22-Sep-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ Word
𝑉) |
| |
| Theorem | ccats1val1g 11099 |
Value of a symbol in the left half of a word concatenated with a single
symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised
by JJ, 20-Jan-2024.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑌 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = (𝑊‘𝐼)) |
| |
| Theorem | ccats1val2 11100 |
Value of the symbol concatenated with a word. (Contributed by Alexander
van der Vekens, 5-Aug-2018.) (Proof shortened by Alexander van der
Vekens, 14-Oct-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = 𝑆) |