HomeHome Intuitionistic Logic Explorer
Theorem List (p. 111 of 133)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11001-11100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremminclpr 11001 The minimum of two real numbers is one of those numbers if and only if dichotomy (𝐴𝐵𝐵𝐴) holds. For example, this can be combined with zletric 9091 if one is dealing with integers, but real number dichotomy in general does not follow from our axioms. (Contributed by Jim Kingdon, 23-May-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremrpmincl 11002 The minumum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 25-Apr-2023.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → inf({𝐴, 𝐵}, ℝ, < ) ∈ ℝ+)
 
Theorembdtrilem 11003 Lemma for bdtri 11004. (Contributed by Steven Nguyen and Jim Kingdon, 17-May-2023.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶))))
 
Theorembdtri 11004 Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )))
 
Theoremmul0inf 11005 Equality of a product with zero. A bit of a curiosity, in the sense that theorems like abs00ap 10827 and mulap0bd 8411 may better express the ideas behind it. (Contributed by Jim Kingdon, 31-Jul-2023.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) = 0))
 
4.7.7  The maximum of two extended reals
 
Theoremxrmaxleim 11006 Value of maximum when we know which extended real is larger. (Contributed by Jim Kingdon, 25-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵))
 
Theoremxrmaxiflemcl 11007 Lemma for xrmaxif 11013. Closure. (Contributed by Jim Kingdon, 29-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈ ℝ*)
 
Theoremxrmaxifle 11008 An upper bound for {𝐴, 𝐵} in the extended reals. (Contributed by Jim Kingdon, 26-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
 
Theoremxrmaxiflemab 11009 Lemma for xrmaxif 11013. A variation of xrmaxleim 11006- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 26-Apr-2023.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐴 < 𝐵)       (𝜑 → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = 𝐵)
 
Theoremxrmaxiflemlub 11010 Lemma for xrmaxif 11013. A least upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon, 28-Apr-2023.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)    &   (𝜑𝐶 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))       (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
 
Theoremxrmaxiflemcom 11011 Lemma for xrmaxif 11013. Commutativity of an expression which we will later show to be the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))
 
Theoremxrmaxiflemval 11012* Lemma for xrmaxif 11013. Value of the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
𝑀 = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))       ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑀 ∈ ℝ* ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)))
 
Theoremxrmaxif 11013 Maximum of two extended reals in terms of if expressions. (Contributed by Jim Kingdon, 26-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝐴, 𝐵}, ℝ*, < ) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
 
Theoremxrmaxcl 11014 The maximum of two extended reals is an extended real. (Contributed by Jim Kingdon, 29-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*)
 
Theoremxrmax1sup 11015 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
 
Theoremxrmax2sup 11016 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
 
Theoremxrmaxrecl 11017 The maximum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 30-Apr-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ, < ))
 
Theoremxrmaxleastlt 11018 The maximum as a least upper bound, in terms of less than. (Contributed by Jim Kingdon, 9-Feb-2022.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐶 < sup({𝐴, 𝐵}, ℝ*, < ))) → (𝐶 < 𝐴𝐶 < 𝐵))
 
Theoremxrltmaxsup 11019 The maximum as a least upper bound. (Contributed by Jim Kingdon, 10-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 < sup({𝐴, 𝐵}, ℝ*, < ) ↔ (𝐶 < 𝐴𝐶 < 𝐵)))
 
Theoremxrmaxltsup 11020 Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
 
Theoremxrmaxlesup 11021 Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 10-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) ≤ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
 
Theoremxrmaxaddlem 11022 Lemma for xrmaxadd 11023. The case where 𝐴 is real. (Contributed by Jim Kingdon, 11-May-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
 
Theoremxrmaxadd 11023 Distributing addition over maximum. (Contributed by Jim Kingdon, 11-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
 
4.7.8  The minimum of two extended reals
 
Theoremxrnegiso 11024 Negation is an order anti-isomorphism of the extended reals, which is its own inverse. (Contributed by Jim Kingdon, 2-May-2023.)
𝐹 = (𝑥 ∈ ℝ* ↦ -𝑒𝑥)       (𝐹 Isom < , < (ℝ*, ℝ*) ∧ 𝐹 = 𝐹)
 
Theoreminfxrnegsupex 11025* The infimum of a set of extended reals 𝐴 is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 2-May-2023.)
(𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))    &   (𝜑𝐴 ⊆ ℝ*)       (𝜑 → inf(𝐴, ℝ*, < ) = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ))
 
Theoremxrnegcon1d 11026 Contraposition law for extended real unary minus. (Contributed by Jim Kingdon, 2-May-2023.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)       (𝜑 → (-𝑒𝐴 = 𝐵 ↔ -𝑒𝐵 = 𝐴))
 
Theoremxrminmax 11027 Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
 
Theoremxrmincl 11028 The minumum of two extended reals is an extended real. (Contributed by Jim Kingdon, 3-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*)
 
Theoremxrmin1inf 11029 The minimum of two extended reals is less than or equal to the first. (Contributed by Jim Kingdon, 3-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) ≤ 𝐴)
 
Theoremxrmin2inf 11030 The minimum of two extended reals is less than or equal to the second. (Contributed by Jim Kingdon, 3-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) ≤ 𝐵)
 
Theoremxrmineqinf 11031 The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) (Revised by Jim Kingdon, 3-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴) → inf({𝐴, 𝐵}, ℝ*, < ) = 𝐵)
 
Theoremxrltmininf 11032 Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 3-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < inf({𝐵, 𝐶}, ℝ*, < ) ↔ (𝐴 < 𝐵𝐴 < 𝐶)))
 
Theoremxrlemininf 11033 Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 4-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ (𝐴𝐵𝐴𝐶)))
 
Theoremxrminltinf 11034 Two ways of saying an extended real is greater than the minimum of two others. (Contributed by Jim Kingdon, 19-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ (𝐵 < 𝐴𝐶 < 𝐴)))
 
Theoremxrminrecl 11035 The minimum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 18-May-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ*, < ) = inf({𝐴, 𝐵}, ℝ, < ))
 
Theoremxrminrpcl 11036 The minimum of two positive reals is a positive real. (Contributed by Jim Kingdon, 4-May-2023.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → inf({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ+)
 
Theoremxrminadd 11037 Distributing addition over minimum. (Contributed by Jim Kingdon, 10-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → inf({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
 
Theoremxrbdtri 11038 Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
(((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
 
Theoremiooinsup 11039 Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (sup({𝐴, 𝐶}, ℝ*, < )(,)inf({𝐵, 𝐷}, ℝ*, < )))
 
4.8  Elementary limits and convergence
 
4.8.1  Limits
 
Syntaxcli 11040 Extend class notation with convergence relation for limits.
class
 
Definitiondf-clim 11041* Define the limit relation for complex number sequences. See clim 11043 for its relational expression. (Contributed by NM, 28-Aug-2005.)
⇝ = {⟨𝑓, 𝑦⟩ ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥))}
 
Theoremclimrel 11042 The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Rel ⇝
 
Theoremclim 11043* Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. This means that for any real 𝑥, no matter how small, there always exists an integer 𝑗 such that the absolute difference of any later complex number in the sequence and the limit is less than 𝑥. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝜑𝐹𝑉)    &   ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = 𝐵)       (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
 
Theoremclimcl 11044 Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐹𝐴𝐴 ∈ ℂ)
 
Theoremclim2 11045* Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴, with more general quantifier restrictions than clim 11043. (Contributed by NM, 6-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)       (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
 
Theoremclim2c 11046* Express the predicate 𝐹 converges to 𝐴. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   (𝜑𝐴 ∈ ℂ)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)       (𝜑 → (𝐹𝐴 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵𝐴)) < 𝑥))
 
Theoremclim0 11047* Express the predicate 𝐹 converges to 0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)       (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘𝐵) < 𝑥)))
 
Theoremclim0c 11048* Express the predicate 𝐹 converges to 0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)       (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))
 
Theoremclimi 11049* Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐶 ∈ ℝ+)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   (𝜑𝐹𝐴)       (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝐶))
 
Theoremclimi2 11050* Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐶 ∈ ℝ+)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   (𝜑𝐹𝐴)       (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵𝐴)) < 𝐶)
 
Theoremclimi0 11051* Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐶 ∈ ℝ+)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   (𝜑𝐹 ⇝ 0)       (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝐶)
 
Theoremclimconst 11052* An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   (𝜑𝐴 ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)       (𝜑𝐹𝐴)
 
Theoremclimconst2 11053 A constant sequence converges to its value. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
(ℤ𝑀) ⊆ 𝑍    &   𝑍 ∈ V       ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ⇝ 𝐴)
 
Theoremclimz 11054 The zero sequence converges to zero. (Contributed by NM, 2-Oct-1999.) (Revised by Mario Carneiro, 31-Jan-2014.)
(ℤ × {0}) ⇝ 0
 
Theoremclimuni 11055 An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
((𝐹𝐴𝐹𝐵) → 𝐴 = 𝐵)
 
Theoremfclim 11056 The limit relation is function-like, and with range the complex numbers. (Contributed by Mario Carneiro, 31-Jan-2014.)
⇝ :dom ⇝ ⟶ℂ
 
Theoremclimdm 11057 Two ways to express that a function has a limit. (The expression ( ⇝ ‘𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 18-Mar-2014.)
(𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
 
Theoremclimeu 11058* An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005.)
(𝐹𝐴 → ∃!𝑥 𝐹𝑥)
 
Theoremclimreu 11059* An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005.)
(𝐹𝐴 → ∃!𝑥 ∈ ℂ 𝐹𝑥)
 
Theoremclimmo 11060* An infinite sequence of complex numbers converges to at most one limit. (Contributed by Mario Carneiro, 13-Jul-2013.)
∃*𝑥 𝐹𝑥
 
Theoremclimeq 11061* Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))       (𝜑 → (𝐹𝐴𝐺𝐴))
 
Theoremclimmpt 11062* Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   𝐺 = (𝑘𝑍 ↦ (𝐹𝑘))       ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴𝐺𝐴))
 
Theorem2clim 11063* If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐺𝑉)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)    &   (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥)    &   (𝜑𝐹𝐴)       (𝜑𝐺𝐴)
 
Theoremclimshftlemg 11064 A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.)
((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴 → (𝐹 shift 𝑀) ⇝ 𝐴))
 
Theoremclimres 11065 A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 ↾ (ℤ𝑀)) ⇝ 𝐴𝐹𝐴))
 
Theoremclimshft 11066 A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴))
 
Theoremserclim0 11067 The zero series converges to zero. (Contributed by Paul Chapman, 9-Feb-2008.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
(𝑀 ∈ ℤ → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
 
Theoremclimshft2 11068* A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐾 ∈ ℤ)    &   (𝜑𝐹𝑊)    &   (𝜑𝐺𝑋)    &   ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹𝑘))       (𝜑 → (𝐹𝐴𝐺𝐴))
 
Theoremclimabs0 11069* Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))       (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0))
 
Theoremclimcn1 11070* Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴𝐵)    &   ((𝜑𝑧𝐵) → (𝐹𝑧) ∈ ℂ)    &   (𝜑𝐺𝐴)    &   (𝜑𝐻𝑊)    &   ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)    &   ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))       (𝜑𝐻 ⇝ (𝐹𝐴))
 
Theoremclimcn2 11071* Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)    &   ((𝜑 ∧ (𝑢𝐶𝑣𝐷)) → (𝑢𝐹𝑣) ∈ ℂ)    &   (𝜑𝐺𝐴)    &   (𝜑𝐻𝐵)    &   (𝜑𝐾𝑊)    &   ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐶)    &   ((𝜑𝑘𝑍) → (𝐻𝑘) ∈ 𝐷)    &   ((𝜑𝑘𝑍) → (𝐾𝑘) = ((𝐺𝑘)𝐹(𝐻𝑘)))       (𝜑𝐾 ⇝ (𝐴𝐹𝐵))
 
Theoremaddcn2 11072* Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn and df-cncf are not yet available to us. See addcncntop 12710 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
 
Theoremsubcn2 11073* Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
 
Theoremmulcn2 11074* Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
 
Theoremreccn2ap 11075* The reciprocal function is continuous. The class 𝑇 is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2137. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
𝑇 = (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2))       ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
 
Theoremcn1lem 11076* A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
𝐹:ℂ⟶ℂ    &   ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)))       ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
 
Theoremabscn2 11077* The absolute value function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((abs‘𝑧) − (abs‘𝐴))) < 𝑥))
 
Theoremcjcn2 11078* The complex conjugate function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((∗‘𝑧) − (∗‘𝐴))) < 𝑥))
 
Theoremrecn2 11079* The real part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((ℜ‘𝑧) − (ℜ‘𝐴))) < 𝑥))
 
Theoremimcn2 11080* The imaginary part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((ℑ‘𝑧) − (ℑ‘𝐴))) < 𝑥))
 
Theoremclimcn1lem 11081* The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   𝐻:ℂ⟶ℂ    &   ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐻𝑧) − (𝐻𝐴))) < 𝑥))    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐻‘(𝐹𝑘)))       (𝜑𝐺 ⇝ (𝐻𝐴))
 
Theoremclimabs 11082* Limit of the absolute value of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))       (𝜑𝐺 ⇝ (abs‘𝐴))
 
Theoremclimcj 11083* Limit of the complex conjugate of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (∗‘(𝐹𝑘)))       (𝜑𝐺 ⇝ (∗‘𝐴))
 
Theoremclimre 11084* Limit of the real part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))       (𝜑𝐺 ⇝ (ℜ‘𝐴))
 
Theoremclimim 11085* Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (ℑ‘(𝐹𝑘)))       (𝜑𝐺 ⇝ (ℑ‘𝐴))
 
Theoremclimrecl 11086* The limit of a convergent real sequence is real. Corollary 12-2.5 of [Gleason] p. 172. (Contributed by NM, 10-Sep-2005.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)       (𝜑𝐴 ∈ ℝ)
 
Theoremclimge0 11087* A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))       (𝜑 → 0 ≤ 𝐴)
 
Theoremclimadd 11088* Limit of the sum of two converging sequences. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by NM, 24-Sep-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐻𝑋)    &   (𝜑𝐺𝐵)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))       (𝜑𝐻 ⇝ (𝐴 + 𝐵))
 
Theoremclimmul 11089* Limit of the product of two converging sequences. Proposition 12-2.1(c) of [Gleason] p. 168. (Contributed by NM, 27-Dec-2005.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐻𝑋)    &   (𝜑𝐺𝐵)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))       (𝜑𝐻 ⇝ (𝐴 · 𝐵))
 
Theoremclimsub 11090* Limit of the difference of two converging sequences. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐻𝑋)    &   (𝜑𝐺𝐵)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))       (𝜑𝐻 ⇝ (𝐴𝐵))
 
Theoremclimaddc1 11091* Limit of a constant 𝐶 added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) + 𝐶))       (𝜑𝐺 ⇝ (𝐴 + 𝐶))
 
Theoremclimaddc2 11092* Limit of a constant 𝐶 added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 + (𝐹𝑘)))       (𝜑𝐺 ⇝ (𝐶 + 𝐴))
 
Theoremclimmulc2 11093* Limit of a sequence multiplied by a constant 𝐶. Corollary 12-2.2 of [Gleason] p. 171. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))       (𝜑𝐺 ⇝ (𝐶 · 𝐴))
 
Theoremclimsubc1 11094* Limit of a constant 𝐶 subtracted from each term of a sequence. (Contributed by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) − 𝐶))       (𝜑𝐺 ⇝ (𝐴𝐶))
 
Theoremclimsubc2 11095* Limit of a constant 𝐶 minus each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 − (𝐹𝑘)))       (𝜑𝐺 ⇝ (𝐶𝐴))
 
Theoremclimle 11096* Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝐵)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐺𝑘))       (𝜑𝐴𝐵)
 
Theoremclimsqz 11097* Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐺𝑘))    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ 𝐴)       (𝜑𝐺𝐴)
 
Theoremclimsqz2 11098* Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))    &   ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐺𝑘))       (𝜑𝐺𝐴)
 
Theoremclim2ser 11099* The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)       (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ (𝐴 − (seq𝑀( + , 𝐹)‘𝑁)))
 
Theoremclim2ser2 11100* The limit of an infinite series with an initial segment added. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ 𝐴)       (𝜑 → seq𝑀( + , 𝐹) ⇝ (𝐴 + (seq𝑀( + , 𝐹)‘𝑁)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13239
  Copyright terms: Public domain < Previous  Next >