Theorem List for Intuitionistic Logic Explorer - 11001-11100 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | hash2 11001 |
Size of a natural number ordinal. (Contributed by Mario Carneiro,
5-Jan-2016.)
|
| ⊢ (♯‘2o) =
2 |
| |
| Theorem | hash3 11002 |
Size of a natural number ordinal. (Contributed by Mario Carneiro,
5-Jan-2016.)
|
| ⊢ (♯‘3o) =
3 |
| |
| Theorem | hash4 11003 |
Size of a natural number ordinal. (Contributed by Mario Carneiro,
5-Jan-2016.)
|
| ⊢ (♯‘4o) =
4 |
| |
| Theorem | pr0hash2ex 11004 |
There is (at least) one set with two different elements: the unordered
pair containing the empty set and the singleton containing the empty set.
(Contributed by AV, 29-Jan-2020.)
|
| ⊢ (♯‘{∅, {∅}}) =
2 |
| |
| Theorem | fihashss 11005 |
The size of a subset is less than or equal to the size of its superset.
(Contributed by Alexander van der Vekens, 14-Jul-2018.)
|
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) |
| |
| Theorem | fiprsshashgt1 11006 |
The size of a superset of a proper unordered pair is greater than 1.
(Contributed by AV, 6-Feb-2021.)
|
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶))) |
| |
| Theorem | fihashssdif 11007 |
The size of the difference of a finite set and a finite subset is the
set's size minus the subset's. (Contributed by Jim Kingdon,
31-May-2022.)
|
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) |
| |
| Theorem | hashdifsn 11008 |
The size of the difference of a finite set and a singleton subset is the
set's size minus 1. (Contributed by Alexander van der Vekens,
6-Jan-2018.)
|
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1)) |
| |
| Theorem | hashdifpr 11009 |
The size of the difference of a finite set and a proper ordered pair
subset is the set's size minus 2. (Contributed by AV, 16-Dec-2020.)
|
| ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2)) |
| |
| Theorem | hashfz 11010 |
Value of the numeric cardinality of a nonempty integer range.
(Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario
Carneiro, 15-Apr-2015.)
|
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) |
| |
| Theorem | hashfzo 11011 |
Cardinality of a half-open set of integers. (Contributed by Stefan
O'Rear, 15-Aug-2015.)
|
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) |
| |
| Theorem | hashfzo0 11012 |
Cardinality of a half-open set of integers based at zero. (Contributed by
Stefan O'Rear, 15-Aug-2015.)
|
| ⊢ (𝐵 ∈ ℕ0 →
(♯‘(0..^𝐵)) =
𝐵) |
| |
| Theorem | hashfzp1 11013 |
Value of the numeric cardinality of a (possibly empty) integer range.
(Contributed by AV, 19-Jun-2021.)
|
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) |
| |
| Theorem | hashfz0 11014 |
Value of the numeric cardinality of a nonempty range of nonnegative
integers. (Contributed by Alexander van der Vekens, 21-Jul-2018.)
|
| ⊢ (𝐵 ∈ ℕ0 →
(♯‘(0...𝐵)) =
(𝐵 + 1)) |
| |
| Theorem | hashxp 11015 |
The size of the Cartesian product of two finite sets is the product of
their sizes. (Contributed by Paul Chapman, 30-Nov-2012.)
|
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))) |
| |
| Theorem | fimaxq 11016* |
A finite set of rational numbers has a maximum. (Contributed by Jim
Kingdon, 6-Sep-2022.)
|
| ⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| |
| Theorem | fiubm 11017* |
Lemma for fiubz 11018 and fiubnn 11019. A general form of those theorems.
(Contributed by Jim Kingdon, 29-Oct-2024.)
|
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵)
& ⊢ (𝜑 → 𝐵 ⊆ ℚ) & ⊢ (𝜑 → 𝐶 ∈ 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| |
| Theorem | fiubz 11018* |
A finite set of integers has an upper bound which is an integer.
(Contributed by Jim Kingdon, 29-Oct-2024.)
|
| ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| |
| Theorem | fiubnn 11019* |
A finite set of natural numbers has an upper bound which is a a natural
number. (Contributed by Jim Kingdon, 29-Oct-2024.)
|
| ⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℕ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| |
| Theorem | resunimafz0 11020 |
The union of a restriction by an image over an open range of nonnegative
integers and a singleton of an ordered pair is a restriction by an image
over an interval of nonnegative integers. (Contributed by Mario
Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.)
|
| ⊢ (𝜑 → Fun 𝐼)
& ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
& ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹)))
⇒ ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
| |
| Theorem | fnfz0hash 11021 |
The size of a function on a finite set of sequential nonnegative integers.
(Contributed by Alexander van der Vekens, 25-Jun-2018.)
|
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (0...𝑁)) → (♯‘𝐹) = (𝑁 + 1)) |
| |
| Theorem | ffz0hash 11022 |
The size of a function on a finite set of sequential nonnegative integers
equals the upper bound of the sequence increased by 1. (Contributed by
Alexander van der Vekens, 15-Mar-2018.) (Proof shortened by AV,
11-Apr-2021.)
|
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(0...𝑁)⟶𝐵) → (♯‘𝐹) = (𝑁 + 1)) |
| |
| Theorem | ffzo0hash 11023 |
The size of a function on a half-open range of nonnegative integers.
(Contributed by Alexander van der Vekens, 25-Mar-2018.)
|
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (0..^𝑁)) → (♯‘𝐹) = 𝑁) |
| |
| Theorem | fnfzo0hash 11024 |
The size of a function on a half-open range of nonnegative integers equals
the upper bound of this range. (Contributed by Alexander van der Vekens,
26-Jan-2018.) (Proof shortened by AV, 11-Apr-2021.)
|
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(0..^𝑁)⟶𝐵) → (♯‘𝐹) = 𝑁) |
| |
| Theorem | hashfacen 11025* |
The number of bijections between two sets is a cardinal invariant.
(Contributed by Mario Carneiro, 21-Jan-2015.)
|
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ≈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) |
| |
| Theorem | leisorel 11026 |
Version of isorel 5905 for strictly increasing functions on the
reals.
(Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro,
9-Sep-2015.)
|
| ⊢ ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*)
∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ≤ 𝐷 ↔ (𝐹‘𝐶) ≤ (𝐹‘𝐷))) |
| |
| Theorem | zfz1isolemsplit 11027 |
Lemma for zfz1iso 11030. Removing one element from an integer
range.
(Contributed by Jim Kingdon, 8-Sep-2022.)
|
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑀 ∈ 𝑋) ⇒ ⊢ (𝜑 → (1...(♯‘𝑋)) =
((1...(♯‘(𝑋
∖ {𝑀}))) ∪
{(♯‘𝑋)})) |
| |
| Theorem | zfz1isolemiso 11028* |
Lemma for zfz1iso 11030. Adding one element to the order
isomorphism.
(Contributed by Jim Kingdon, 8-Sep-2022.)
|
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ⊆ ℤ) & ⊢ (𝜑 → 𝑀 ∈ 𝑋)
& ⊢ (𝜑 → ∀𝑧 ∈ 𝑋 𝑧 ≤ 𝑀)
& ⊢ (𝜑 → 𝐺 Isom < , <
((1...(♯‘(𝑋
∖ {𝑀}))), (𝑋 ∖ {𝑀}))) & ⊢ (𝜑 → 𝐴 ∈ (1...(♯‘𝑋))) & ⊢ (𝜑 → 𝐵 ∈ (1...(♯‘𝑋)))
⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ((𝐺 ∪ {〈(♯‘𝑋), 𝑀〉})‘𝐴) < ((𝐺 ∪ {〈(♯‘𝑋), 𝑀〉})‘𝐵))) |
| |
| Theorem | zfz1isolem1 11029* |
Lemma for zfz1iso 11030. Existence of an order isomorphism given
the
existence of shorter isomorphisms. (Contributed by Jim Kingdon,
7-Sep-2022.)
|
| ⊢ (𝜑 → 𝐾 ∈ ω) & ⊢ (𝜑 → ∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦 ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦))) & ⊢ (𝜑 → 𝑋 ⊆ ℤ) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≈ suc 𝐾)
& ⊢ (𝜑 → 𝑀 ∈ 𝑋)
& ⊢ (𝜑 → ∀𝑧 ∈ 𝑋 𝑧 ≤ 𝑀) ⇒ ⊢ (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)) |
| |
| Theorem | zfz1iso 11030* |
A finite set of integers has an order isomorphism to a one-based finite
sequence. (Contributed by Jim Kingdon, 3-Sep-2022.)
|
| ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
| |
| Theorem | seq3coll 11031* |
The function 𝐹 contains a sparse set of nonzero
values to be summed.
The function 𝐺 is an order isomorphism from the set
of nonzero
values of 𝐹 to a 1-based finite sequence, and
𝐻
collects these
nonzero values together. Under these conditions, the sum over the
values in 𝐻 yields the same result as the sum
over the original set
𝐹. (Contributed by Mario Carneiro,
2-Apr-2014.) (Revised by Jim
Kingdon, 9-Apr-2023.)
|
| ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑍 + 𝑘) = 𝑘)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑘 + 𝑍) = 𝑘)
& ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆)) → (𝑘 + 𝑛) ∈ 𝑆)
& ⊢ (𝜑 → 𝑍 ∈ 𝑆)
& ⊢ (𝜑 → 𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴)) & ⊢ (𝜑 → 𝑁 ∈ (1...(♯‘𝐴))) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆)
& ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (𝐻‘𝑘) ∈ 𝑆)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹‘𝑘) = 𝑍)
& ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)) |
| |
| 4.6.10.1 Proper unordered pairs and triples
(sets of size 2 and 3)
|
| |
| Theorem | hash2en 11032 |
Two equivalent ways to say a set has two elements. (Contributed by Jim
Kingdon, 4-Dec-2025.)
|
| ⊢ (𝑉 ≈ 2o ↔ (𝑉 ∈ Fin ∧
(♯‘𝑉) =
2)) |
| |
| Theorem | hashdmprop2dom 11033 |
A class which contains two ordered pairs with different first components
has at least two elements. (Contributed by AV, 12-Nov-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐷 ∈ 𝑌)
& ⊢ (𝜑 → 𝐹 ∈ 𝑍)
& ⊢ (𝜑 → 𝐴 ≠ 𝐵)
& ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹) ⇒ ⊢ (𝜑 → 2o ≼ dom 𝐹) |
| |
| 4.6.10.2 Functions with a domain containing at
least two different elements
|
| |
| Theorem | fundm2domnop0 11034 |
A function with a domain containing (at least) two different elements is
not an ordered pair. This theorem (which requires that
(𝐺
∖ {∅}) needs to be a function instead of 𝐺) is
useful
for proofs for extensible structures, see structn0fun 13011. (Contributed
by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Proof shortened by
AV, 15-Nov-2021.)
|
| ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 2o
≼ dom 𝐺) →
¬ 𝐺 ∈ (V ×
V)) |
| |
| Theorem | fundm2domnop 11035 |
A function with a domain containing (at least) two different elements is
not an ordered pair. (Contributed by AV, 12-Oct-2020.) (Proof
shortened by AV, 9-Jun-2021.)
|
| ⊢ ((Fun 𝐺 ∧ 2o ≼ dom 𝐺) → ¬ 𝐺 ∈ (V ×
V)) |
| |
| Theorem | fun2dmnop0 11036 |
A function with a domain containing (at least) two different elements is
not an ordered pair. This stronger version of fun2dmnop 11037 (with the
less restrictive requirement that (𝐺 ∖ {∅}) needs to be a
function instead of 𝐺) is useful for proofs for extensible
structures, see structn0fun 13011. (Contributed by AV, 21-Sep-2020.)
(Revised by AV, 7-Jun-2021.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) |
| |
| Theorem | fun2dmnop 11037 |
A function with a domain containing (at least) two different elements is
not an ordered pair. (Contributed by AV, 21-Sep-2020.) (Proof
shortened by AV, 9-Jun-2021.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ ((Fun 𝐺 ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) |
| |
| 4.7 Words over a set
This section is about words (or strings) over a set (alphabet) defined
as finite sequences of symbols (or characters) being elements of the
alphabet. Although it is often required that the underlying set/alphabet be
nonempty, finite and not a proper class, these restrictions are not made in
the current definition df-word 11039. Note that the empty word ∅ (i.e.,
the empty set) is the only word over an empty alphabet, see 0wrd0 11064.
The set Word 𝑆 of words over 𝑆 is the free monoid over 𝑆, where
the monoid law is concatenation and the monoid unit is the empty word.
Besides the definition of words themselves, several operations on words are
defined in this section:
| Name | Reference | Explanation | Example |
Remarks |
| Length (or size) of a word | df-ihash 10965: (♯‘𝑊) |
Operation which determines the number of the symbols
within the word. |
𝑊:(0..^𝑁)⟶𝑆 → (𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 𝑁 |
This is not a special definition for words,
but for arbitrary sets. |
| First symbol of a word | df-fv 5302: (𝑊‘0) |
Operation which extracts the first symbol of a word. The result is the
symbol at the first place in the sequence representing the word. |
𝑊:(0..^1)⟶𝑆 → (𝑊 ∈ Word 𝑆 ∧ (𝑊‘0) ∈ 𝑆 |
This is not a special definition for words,
but for arbitrary functions with a half-open range of nonnegative
integers as domain. |
| Last symbol of a word | df-lsw 11083: (lastS‘𝑊) |
Operation which extracts the last symbol of a word. The result is the
symbol at the last place in the sequence representing the word. |
𝑊:(0..^3)⟶𝑆 → (𝑊 ∈ Word 𝑆 ∧ (lastS‘𝑊) = (𝑊‘2) |
Note that the index of the last symbol is less by 1 than the length of
the word. |
| Subword (or substring) of a word |
df-substr 11144: (𝑊 substr 〈𝐼, 𝐽〉) |
Operation which extracts a portion of a word. The result is a
consecutive, reindexed part of the sequence representing the word. |
𝑊:(0..^3)⟶𝑆 → (𝑊 ∈ Word 𝑆 ∧ (𝑊 substr 〈1, 2〉) ∈ Word 𝑆 ∧ (♯‘(𝑊 substr 〈1, 2〉)) = 1 |
Note that the last index of the range defining the subword is greater
by 1 than the index of the last symbol of the subword in the sequence
of the original word. |
| Concatenation of two words |
df-concat 11092: (𝑊 ++ 𝑈) |
Operation combining two words to one new word. The result is a
combined, reindexed sequence build from the sequences representing
the two words. |
(𝑊 ∈ Word 𝑆 ∧ 𝑈 ∈ Word 𝑆) → (♯‘(𝑊 ++ 𝑈)) = ((♯‘𝑊) + (♯‘𝑈)) |
Note that the index of the first symbol of the second concatenated
word is the length of the first word in the concatenation. |
| Singleton word |
df-s1 11115: 〈“𝑆”〉 |
Constructor building a word of length 1 from a symbol. |
(♯‘〈“𝑆”〉) = 1 |
|
Conventions:
- Words are usually represented by class variable 𝑊, or if two words
are involved, by 𝑊 and 𝑈 or by 𝐴 and 𝐵.
- The alphabets are usually represented by class variable 𝑉 (because
any arbitrary set can be an alphabet), sometimes also by 𝑆 (especially
as codomain of the function representing a word, because the alphabet is the
set of symbols).
- The symbols are usually represented by class variables 𝑆 or 𝐴,
or if two symbols are involved, by 𝑆 and 𝑇 or by 𝐴 and 𝐵.
- The indices of the sequence representing a word are usually represented
by class variable 𝐼, if two indices are involved (especially for
subwords) by 𝐼 and 𝐽, or by 𝑀 and 𝑁.
- The length of a word is usually represented by class variables 𝑁
or 𝐿.
- The number of positions by which to cyclically shift a word is usually
represented by class variables 𝑁 or 𝐿.
|
| |
| 4.7.1 Definitions and basic
theorems
|
| |
| Syntax | cword 11038 |
Syntax for the Word operator.
|
| class Word 𝑆 |
| |
| Definition | df-word 11039* |
Define the class of words over a set. A word (sometimes also called a
string) is a finite sequence of symbols from a set (alphabet)
𝑆.
Definition in Section 9.1 of [AhoHopUll] p. 318. The domain is forced
to be an initial segment of ℕ0
so that two words with the same
symbols in the same order be equal. The set Word 𝑆 is sometimes
denoted by S*, using the Kleene star, although the Kleene star, or
Kleene closure, is sometimes reserved to denote an operation on
languages. The set Word 𝑆 equipped with concatenation is the
free
monoid over 𝑆, and the monoid unit is the empty
word. (Contributed
by FL, 14-Jan-2014.) (Revised by Stefan O'Rear, 14-Aug-2015.) (Revised
by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} |
| |
| Theorem | iswrd 11040* |
Property of being a word over a set with an existential quantifier over
the length. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by
Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.)
|
| ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
| |
| Theorem | wrdval 11041* |
Value of the set of words over a set. (Contributed by Stefan O'Rear,
10-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 = ∪
𝑙 ∈
ℕ0 (𝑆
↑𝑚 (0..^𝑙))) |
| |
| Theorem | lencl 11042 |
The length of a word is a nonnegative integer. This corresponds to the
definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan
O'Rear, 27-Aug-2015.)
|
| ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈
ℕ0) |
| |
| Theorem | iswrdinn0 11043 |
A zero-based sequence is a word. (Contributed by Stefan O'Rear,
15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Revised by
Jim Kingdon, 16-Aug-2025.)
|
| ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℕ0) → 𝑊 ∈ Word 𝑆) |
| |
| Theorem | wrdf 11044 |
A word is a zero-based sequence with a recoverable upper limit.
(Contributed by Stefan O'Rear, 15-Aug-2015.)
|
| ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| |
| Theorem | iswrdiz 11045 |
A zero-based sequence is a word. In iswrdinn0 11043 we can specify a length
as an nonnegative integer. However, it will occasionally be helpful to
allow a negative length, as well as zero, to specify an empty sequence.
(Contributed by Jim Kingdon, 18-Aug-2025.)
|
| ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) → 𝑊 ∈ Word 𝑆) |
| |
| Theorem | wrddm 11046 |
The indices of a word (i.e. its domain regarded as function) are elements
of an open range of nonnegative integers (of length equal to the length of
the word). (Contributed by AV, 2-May-2020.)
|
| ⊢ (𝑊 ∈ Word 𝑆 → dom 𝑊 = (0..^(♯‘𝑊))) |
| |
| Theorem | sswrd 11047 |
The set of words respects ordering on the base set. (Contributed by
Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
(Proof shortened by AV, 13-May-2020.)
|
| ⊢ (𝑆 ⊆ 𝑇 → Word 𝑆 ⊆ Word 𝑇) |
| |
| Theorem | snopiswrd 11048 |
A singleton of an ordered pair (with 0 as first component) is a word.
(Contributed by AV, 23-Nov-2018.) (Proof shortened by AV,
18-Apr-2021.)
|
| ⊢ (𝑆 ∈ 𝑉 → {〈0, 𝑆〉} ∈ Word 𝑉) |
| |
| Theorem | wrdexg 11049 |
The set of words over a set is a set. (Contributed by Mario Carneiro,
26-Feb-2016.) (Proof shortened by JJ, 18-Nov-2022.)
|
| ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 ∈ V) |
| |
| Theorem | wrdexb 11050 |
The set of words over a set is a set, bidirectional version.
(Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV,
23-Nov-2018.)
|
| ⊢ (𝑆 ∈ V ↔ Word 𝑆 ∈ V) |
| |
| Theorem | wrdexi 11051 |
The set of words over a set is a set, inference form. (Contributed by
AV, 23-May-2021.)
|
| ⊢ 𝑆 ∈ V ⇒ ⊢ Word 𝑆 ∈ V |
| |
| Theorem | wrdsymbcl 11052 |
A symbol within a word over an alphabet belongs to the alphabet.
(Contributed by Alexander van der Vekens, 28-Jun-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝐼) ∈ 𝑉) |
| |
| Theorem | wrdfn 11053 |
A word is a function with a zero-based sequence of integers as domain.
(Contributed by Alexander van der Vekens, 13-Apr-2018.)
|
| ⊢ (𝑊 ∈ Word 𝑆 → 𝑊 Fn (0..^(♯‘𝑊))) |
| |
| Theorem | wrdv 11054 |
A word over an alphabet is a word over the universal class. (Contributed
by AV, 8-Feb-2021.) (Proof shortened by JJ, 18-Nov-2022.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → 𝑊 ∈ Word V) |
| |
| Theorem | wrdlndm 11055 |
The length of a word is not in the domain of the word (regarded as a
function). (Contributed by AV, 3-Mar-2021.) (Proof shortened by JJ,
18-Nov-2022.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∉ dom 𝑊) |
| |
| Theorem | iswrdsymb 11056* |
An arbitrary word is a word over an alphabet if all of its symbols
belong to the alphabet. (Contributed by AV, 23-Jan-2021.)
|
| ⊢ ((𝑊 ∈ Word V ∧ ∀𝑖 ∈
(0..^(♯‘𝑊))(𝑊‘𝑖) ∈ 𝑉) → 𝑊 ∈ Word 𝑉) |
| |
| Theorem | wrdfin 11057 |
A word is a finite set. (Contributed by Stefan O'Rear, 2-Nov-2015.)
(Proof shortened by AV, 18-Nov-2018.)
|
| ⊢ (𝑊 ∈ Word 𝑆 → 𝑊 ∈ Fin) |
| |
| Theorem | lennncl 11058 |
The length of a nonempty word is a positive integer. (Contributed by
Mario Carneiro, 1-Oct-2015.)
|
| ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈
ℕ) |
| |
| Theorem | wrdffz 11059 |
A word is a function from a finite interval of integers. (Contributed by
AV, 10-Feb-2021.)
|
| ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0...((♯‘𝑊) − 1))⟶𝑆) |
| |
| Theorem | wrdeq 11060 |
Equality theorem for the set of words. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ (𝑆 = 𝑇 → Word 𝑆 = Word 𝑇) |
| |
| Theorem | wrdeqi 11061 |
Equality theorem for the set of words, inference form. (Contributed by
AV, 23-May-2021.)
|
| ⊢ 𝑆 = 𝑇 ⇒ ⊢ Word 𝑆 = Word 𝑇 |
| |
| Theorem | iswrddm0 11062 |
A function with empty domain is a word. (Contributed by AV,
13-Oct-2018.)
|
| ⊢ (𝑊:∅⟶𝑆 → 𝑊 ∈ Word 𝑆) |
| |
| Theorem | wrd0 11063 |
The empty set is a word (the empty word, frequently denoted ε in
this context). This corresponds to the definition in Section 9.1 of
[AhoHopUll] p. 318. (Contributed by
Stefan O'Rear, 15-Aug-2015.) (Proof
shortened by AV, 13-May-2020.)
|
| ⊢ ∅ ∈ Word 𝑆 |
| |
| Theorem | 0wrd0 11064 |
The empty word is the only word over an empty alphabet. (Contributed by
AV, 25-Oct-2018.)
|
| ⊢ (𝑊 ∈ Word ∅ ↔ 𝑊 = ∅) |
| |
| Theorem | wrdsymb 11065 |
A word is a word over the symbols it consists of. (Contributed by AV,
1-Dec-2022.)
|
| ⊢ (𝑆 ∈ Word 𝐴 → 𝑆 ∈ Word (𝑆 “ (0..^(♯‘𝑆)))) |
| |
| Theorem | nfwrd 11066 |
Hypothesis builder for Word 𝑆. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ Ⅎ𝑥𝑆 ⇒ ⊢ Ⅎ𝑥Word 𝑆 |
| |
| Theorem | csbwrdg 11067* |
Class substitution for the symbols of a word. (Contributed by Alexander
van der Vekens, 15-Jul-2018.)
|
| ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌Word 𝑥 = Word 𝑆) |
| |
| Theorem | wrdnval 11068* |
Words of a fixed length are mappings from a fixed half-open integer
interval. (Contributed by Alexander van der Vekens, 25-Mar-2018.)
(Proof shortened by AV, 13-May-2020.)
|
| ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = (𝑉 ↑𝑚 (0..^𝑁))) |
| |
| Theorem | wrdmap 11069 |
Words as a mapping. (Contributed by Thierry Arnoux, 4-Mar-2020.)
|
| ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ↔ 𝑊 ∈ (𝑉 ↑𝑚 (0..^𝑁)))) |
| |
| Theorem | wrdsymb0 11070 |
A symbol at a position "outside" of a word. (Contributed by
Alexander van
der Vekens, 26-May-2018.) (Proof shortened by AV, 2-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → (𝑊‘𝐼) = ∅)) |
| |
| Theorem | wrdlenge1n0 11071 |
A word with length at least 1 is not empty. (Contributed by AV,
14-Oct-2018.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ ↔ 1 ≤
(♯‘𝑊))) |
| |
| Theorem | len0nnbi 11072 |
The length of a word is a positive integer iff the word is not empty.
(Contributed by AV, 22-Mar-2022.)
|
| ⊢ (𝑊 ∈ Word 𝑆 → (𝑊 ≠ ∅ ↔ (♯‘𝑊) ∈
ℕ)) |
| |
| Theorem | wrdlenge2n0 11073 |
A word with length at least 2 is not empty. (Contributed by AV,
18-Jun-2018.) (Proof shortened by AV, 14-Oct-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 𝑊 ≠ ∅) |
| |
| Theorem | wrdsymb1 11074 |
The first symbol of a nonempty word over an alphabet belongs to the
alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑊)) → (𝑊‘0) ∈ 𝑉) |
| |
| Theorem | wrdlen1 11075* |
A word of length 1 starts with a symbol. (Contributed by AV,
20-Jul-2018.) (Proof shortened by AV, 19-Oct-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → ∃𝑣 ∈ 𝑉 (𝑊‘0) = 𝑣) |
| |
| Theorem | fstwrdne 11076 |
The first symbol of a nonempty word is element of the alphabet for the
word. (Contributed by AV, 28-Sep-2018.) (Proof shortened by AV,
14-Oct-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊‘0) ∈ 𝑉) |
| |
| Theorem | fstwrdne0 11077 |
The first symbol of a nonempty word is element of the alphabet for the
word. (Contributed by AV, 29-Sep-2018.) (Proof shortened by AV,
14-Oct-2018.)
|
| ⊢ ((𝑁 ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)) → (𝑊‘0) ∈ 𝑉) |
| |
| Theorem | eqwrd 11078* |
Two words are equal iff they have the same length and the same symbol at
each position. (Contributed by AV, 13-Apr-2018.) (Revised by JJ,
30-Dec-2023.)
|
| ⊢ ((𝑈 ∈ Word 𝑆 ∧ 𝑊 ∈ Word 𝑇) → (𝑈 = 𝑊 ↔ ((♯‘𝑈) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈‘𝑖) = (𝑊‘𝑖)))) |
| |
| Theorem | elovmpowrd 11079* |
Implications for the value of an operation defined by the maps-to
notation with a class abstraction of words as a result having an
element. Note that 𝜑 may depend on 𝑧 as well as on 𝑣 and
𝑦. (Contributed by Alexander van der
Vekens, 15-Jul-2018.)
|
| ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) ⇒ ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
| |
| Theorem | wrdred1 11080 |
A word truncated by a symbol is a word. (Contributed by AV,
29-Jan-2021.)
|
| ⊢ (𝐹 ∈ Word 𝑆 → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word
𝑆) |
| |
| Theorem | wrdred1hash 11081 |
The length of a word truncated by a symbol. (Contributed by Alexander van
der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
|
| ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾
(0..^((♯‘𝐹)
− 1)))) = ((♯‘𝐹) − 1)) |
| |
| 4.7.2 Last symbol of a word
|
| |
| Syntax | clsw 11082 |
Extend class notation with the Last Symbol of a word.
|
| class lastS |
| |
| Definition | df-lsw 11083 |
Extract the last symbol of a word. May be not meaningful for other sets
which are not words. The name lastS (as
abbreviation of "lastSymbol")
is a compromise between usually used names for corresponding functions in
computer programs (as last() or lastChar()), the terminology used for
words in set.mm ("symbol" instead of "character") and
brevity ("lastS" is
shorter than "lastChar" and "lastSymbol"). Labels of
theorems about last
symbols of a word will contain the abbreviation "lsw" (Last
Symbol of a
Word). (Contributed by Alexander van der Vekens, 18-Mar-2018.)
|
| ⊢ lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1))) |
| |
| Theorem | lswwrd 11084 |
Extract the last symbol of a word. (Contributed by Alexander van der
Vekens, 18-Mar-2018.) (Revised by Jim Kingdon, 18-Dec-2025.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| |
| Theorem | lsw0 11085 |
The last symbol of an empty word does not exist. (Contributed by
Alexander van der Vekens, 19-Mar-2018.) (Proof shortened by AV,
2-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → (lastS‘𝑊) = ∅) |
| |
| Theorem | lsw0g 11086 |
The last symbol of an empty word does not exist. (Contributed by
Alexander van der Vekens, 11-Nov-2018.)
|
| ⊢ (lastS‘∅) =
∅ |
| |
| Theorem | lsw1 11087 |
The last symbol of a word of length 1 is the first symbol of this word.
(Contributed by Alexander van der Vekens, 19-Mar-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → (lastS‘𝑊) = (𝑊‘0)) |
| |
| Theorem | lswcl 11088 |
Closure of the last symbol: the last symbol of a nonempty word belongs to
the alphabet for the word. (Contributed by AV, 2-Aug-2018.) (Proof
shortened by AV, 29-Apr-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (lastS‘𝑊) ∈ 𝑉) |
| |
| Theorem | lswex 11089 |
Existence of the last symbol. The last symbol of a word is a set. See
lsw0g 11086 or lswcl 11088 if you want more specific results
for empty or
nonempty words, respectively. (Contributed by Jim Kingdon,
27-Dec-2025.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) ∈ V) |
| |
| Theorem | lswlgt0cl 11090 |
The last symbol of a nonempty word is an element of the alphabet for the
word. (Contributed by Alexander van der Vekens, 1-Oct-2018.) (Proof
shortened by AV, 29-Apr-2020.)
|
| ⊢ ((𝑁 ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)) → (lastS‘𝑊) ∈ 𝑉) |
| |
| 4.7.3 Concatenations of words
|
| |
| Syntax | cconcat 11091 |
Syntax for the concatenation operator.
|
| class ++ |
| |
| Definition | df-concat 11092* |
Define the concatenation operator which combines two words. Definition
in Section 9.1 of [AhoHopUll] p. 318.
(Contributed by FL, 14-Jan-2014.)
(Revised by Stefan O'Rear, 15-Aug-2015.)
|
| ⊢ ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈
(0..^(♯‘𝑠)),
(𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))))) |
| |
| Theorem | ccatfvalfi 11093* |
Value of the concatenation operator. (Contributed by Stefan O'Rear,
15-Aug-2015.)
|
| ⊢ ((𝑆 ∈ Fin ∧ 𝑇 ∈ Fin) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈
(0..^(♯‘𝑆)),
(𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
| |
| Theorem | ccatcl 11094 |
The concatenation of two words is a word. (Contributed by FL,
2-Feb-2014.) (Proof shortened by Stefan O'Rear, 15-Aug-2015.) (Proof
shortened by AV, 29-Apr-2020.)
|
| ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵) |
| |
| Theorem | ccatclab 11095 |
The concatenation of words over two sets is a word over the union of
those sets. (Contributed by Jim Kingdon, 19-Dec-2025.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word (𝐴 ∪ 𝐵)) |
| |
| Theorem | ccatlen 11096 |
The length of a concatenated word. (Contributed by Stefan O'Rear,
15-Aug-2015.) (Revised by JJ, 1-Jan-2024.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇))) |
| |
| Theorem | ccat0 11097 |
The concatenation of two words is empty iff the two words are empty.
(Contributed by AV, 4-Mar-2022.) (Revised by JJ, 18-Jan-2024.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) = ∅ ↔ (𝑆 = ∅ ∧ 𝑇 = ∅))) |
| |
| Theorem | ccatval1 11098 |
Value of a symbol in the left half of a concatenated word. (Contributed
by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro,
22-Sep-2015.) (Proof shortened by AV, 30-Apr-2020.) (Revised by JJ,
18-Jan-2024.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑆‘𝐼)) |
| |
| Theorem | ccatval2 11099 |
Value of a symbol in the right half of a concatenated word.
(Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario
Carneiro, 22-Sep-2015.)
|
| ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑇‘(𝐼 − (♯‘𝑆)))) |
| |
| Theorem | ccatval3 11100 |
Value of a symbol in the right half of a concatenated word, using an
index relative to the subword. (Contributed by Stefan O'Rear,
16-Aug-2015.) (Proof shortened by AV, 30-Apr-2020.)
|
| ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝐼 + (♯‘𝑆))) = (𝑇‘𝐼)) |