| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fun2dmnop0 | GIF version | ||
| Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop 11015 (with the less restrictive requirement that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 12920. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.) |
| Ref | Expression |
|---|---|
| fun2dmnop.a | ⊢ 𝐴 ∈ V |
| fun2dmnop.b | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fun2dmnop0 | ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1003 | . . 3 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → Fun (𝐺 ∖ {∅})) | |
| 2 | dmexg 4951 | . . . 4 ⊢ (𝐺 ∈ (V × V) → dom 𝐺 ∈ V) | |
| 3 | simpl3 1005 | . . . . . 6 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → {𝐴, 𝐵} ⊆ dom 𝐺) | |
| 4 | fun2dmnop.a | . . . . . . . 8 ⊢ 𝐴 ∈ V | |
| 5 | 4 | prid1 3744 | . . . . . . 7 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
| 6 | 5 | a1i 9 | . . . . . 6 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 𝐴 ∈ {𝐴, 𝐵}) |
| 7 | 3, 6 | sseldd 3198 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 𝐴 ∈ dom 𝐺) |
| 8 | fun2dmnop.b | . . . . . . . 8 ⊢ 𝐵 ∈ V | |
| 9 | 8 | prid2 3745 | . . . . . . 7 ⊢ 𝐵 ∈ {𝐴, 𝐵} |
| 10 | 9 | a1i 9 | . . . . . 6 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 𝐵 ∈ {𝐴, 𝐵}) |
| 11 | 3, 10 | sseldd 3198 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 𝐵 ∈ dom 𝐺) |
| 12 | simpl2 1004 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 𝐴 ≠ 𝐵) | |
| 13 | neeq1 2390 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ≠ 𝑏 ↔ 𝐴 ≠ 𝑏)) | |
| 14 | neeq2 2391 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝐴 ≠ 𝑏 ↔ 𝐴 ≠ 𝐵)) | |
| 15 | 13, 14 | rspc2ev 2896 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺 ∧ 𝐴 ≠ 𝐵) → ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏) |
| 16 | 7, 11, 12, 15 | syl3anc 1250 | . . . 4 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏) |
| 17 | rex2dom 6924 | . . . 4 ⊢ ((dom 𝐺 ∈ V ∧ ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏) → 2o ≼ dom 𝐺) | |
| 18 | 2, 16, 17 | syl2an2 594 | . . 3 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 2o ≼ dom 𝐺) |
| 19 | fundm2domnop0 11012 | . . 3 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 2o ≼ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) | |
| 20 | 1, 18, 19 | syl2anc 411 | . 2 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → ¬ 𝐺 ∈ (V × V)) |
| 21 | 20 | pm2.01da 637 | 1 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 981 ∈ wcel 2177 ≠ wne 2377 ∃wrex 2486 Vcvv 2773 ∖ cdif 3167 ⊆ wss 3170 ∅c0 3464 {csn 3638 {cpr 3639 class class class wbr 4051 × cxp 4681 dom cdm 4683 Fun wfun 5274 2oc2o 6509 ≼ cdom 6839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-1o 6515 df-2o 6516 df-en 6841 df-dom 6842 |
| This theorem is referenced by: fun2dmnop 11015 funvtxdm2vald 15705 funiedgdm2vald 15706 |
| Copyright terms: Public domain | W3C validator |