ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2dmnop0 GIF version

Theorem fun2dmnop0 11014
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop 11015 (with the less restrictive requirement that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 12920. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.)
Hypotheses
Ref Expression
fun2dmnop.a 𝐴 ∈ V
fun2dmnop.b 𝐵 ∈ V
Assertion
Ref Expression
fun2dmnop0 ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V))

Proof of Theorem fun2dmnop0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1003 . . 3 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → Fun (𝐺 ∖ {∅}))
2 dmexg 4951 . . . 4 (𝐺 ∈ (V × V) → dom 𝐺 ∈ V)
3 simpl3 1005 . . . . . 6 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → {𝐴, 𝐵} ⊆ dom 𝐺)
4 fun2dmnop.a . . . . . . . 8 𝐴 ∈ V
54prid1 3744 . . . . . . 7 𝐴 ∈ {𝐴, 𝐵}
65a1i 9 . . . . . 6 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 𝐴 ∈ {𝐴, 𝐵})
73, 6sseldd 3198 . . . . 5 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 𝐴 ∈ dom 𝐺)
8 fun2dmnop.b . . . . . . . 8 𝐵 ∈ V
98prid2 3745 . . . . . . 7 𝐵 ∈ {𝐴, 𝐵}
109a1i 9 . . . . . 6 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 𝐵 ∈ {𝐴, 𝐵})
113, 10sseldd 3198 . . . . 5 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 𝐵 ∈ dom 𝐺)
12 simpl2 1004 . . . . 5 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 𝐴𝐵)
13 neeq1 2390 . . . . . 6 (𝑎 = 𝐴 → (𝑎𝑏𝐴𝑏))
14 neeq2 2391 . . . . . 6 (𝑏 = 𝐵 → (𝐴𝑏𝐴𝐵))
1513, 14rspc2ev 2896 . . . . 5 ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺𝐴𝐵) → ∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏)
167, 11, 12, 15syl3anc 1250 . . . 4 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → ∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏)
17 rex2dom 6924 . . . 4 ((dom 𝐺 ∈ V ∧ ∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 𝑎𝑏) → 2o ≼ dom 𝐺)
182, 16, 17syl2an2 594 . . 3 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 2o ≼ dom 𝐺)
19 fundm2domnop0 11012 . . 3 ((Fun (𝐺 ∖ {∅}) ∧ 2o ≼ dom 𝐺) → ¬ 𝐺 ∈ (V × V))
201, 18, 19syl2anc 411 . 2 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → ¬ 𝐺 ∈ (V × V))
2120pm2.01da 637 1 ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 981  wcel 2177  wne 2377  wrex 2486  Vcvv 2773  cdif 3167  wss 3170  c0 3464  {csn 3638  {cpr 3639   class class class wbr 4051   × cxp 4681  dom cdm 4683  Fun wfun 5274  2oc2o 6509  cdom 6839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-1o 6515  df-2o 6516  df-en 6841  df-dom 6842
This theorem is referenced by:  fun2dmnop  11015  funvtxdm2vald  15705  funiedgdm2vald  15706
  Copyright terms: Public domain W3C validator