| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fun2dmnop0 | GIF version | ||
| Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop 10991 (with the less restrictive requirement that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 12787. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.) |
| Ref | Expression |
|---|---|
| fun2dmnop.a | ⊢ 𝐴 ∈ V |
| fun2dmnop.b | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fun2dmnop0 | ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1002 | . . 3 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → Fun (𝐺 ∖ {∅})) | |
| 2 | dmexg 4941 | . . . 4 ⊢ (𝐺 ∈ (V × V) → dom 𝐺 ∈ V) | |
| 3 | simpl3 1004 | . . . . . 6 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → {𝐴, 𝐵} ⊆ dom 𝐺) | |
| 4 | fun2dmnop.a | . . . . . . . 8 ⊢ 𝐴 ∈ V | |
| 5 | 4 | prid1 3738 | . . . . . . 7 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
| 6 | 5 | a1i 9 | . . . . . 6 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 𝐴 ∈ {𝐴, 𝐵}) |
| 7 | 3, 6 | sseldd 3193 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 𝐴 ∈ dom 𝐺) |
| 8 | fun2dmnop.b | . . . . . . . 8 ⊢ 𝐵 ∈ V | |
| 9 | 8 | prid2 3739 | . . . . . . 7 ⊢ 𝐵 ∈ {𝐴, 𝐵} |
| 10 | 9 | a1i 9 | . . . . . 6 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 𝐵 ∈ {𝐴, 𝐵}) |
| 11 | 3, 10 | sseldd 3193 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 𝐵 ∈ dom 𝐺) |
| 12 | simpl2 1003 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 𝐴 ≠ 𝐵) | |
| 13 | neeq1 2388 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ≠ 𝑏 ↔ 𝐴 ≠ 𝑏)) | |
| 14 | neeq2 2389 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝐴 ≠ 𝑏 ↔ 𝐴 ≠ 𝐵)) | |
| 15 | 13, 14 | rspc2ev 2891 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺 ∧ 𝐴 ≠ 𝐵) → ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏) |
| 16 | 7, 11, 12, 15 | syl3anc 1249 | . . . 4 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏) |
| 17 | rex2dom 6909 | . . . 4 ⊢ ((dom 𝐺 ∈ V ∧ ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏) → 2o ≼ dom 𝐺) | |
| 18 | 2, 16, 17 | syl2an2 594 | . . 3 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → 2o ≼ dom 𝐺) |
| 19 | fundm2domnop0 10988 | . . 3 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 2o ≼ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) | |
| 20 | 1, 18, 19 | syl2anc 411 | . 2 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ (V × V)) → ¬ 𝐺 ∈ (V × V)) |
| 21 | 20 | pm2.01da 637 | 1 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2175 ≠ wne 2375 ∃wrex 2484 Vcvv 2771 ∖ cdif 3162 ⊆ wss 3165 ∅c0 3459 {csn 3632 {cpr 3633 class class class wbr 4043 × cxp 4672 dom cdm 4674 Fun wfun 5264 2oc2o 6495 ≼ cdom 6825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-1o 6501 df-2o 6502 df-en 6827 df-dom 6828 |
| This theorem is referenced by: fun2dmnop 10991 funvtxdm2vald 15570 funiedgdm2vald 15571 |
| Copyright terms: Public domain | W3C validator |