ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ne0 GIF version

Theorem 2ne0 9158
Description: The number 2 is nonzero. (Contributed by NM, 9-Nov-2007.)
Assertion
Ref Expression
2ne0 2 ≠ 0

Proof of Theorem 2ne0
StepHypRef Expression
1 2re 9136 . 2 2 ∈ ℝ
2 2pos 9157 . 2 0 < 2
31, 2gt0ne0ii 8590 1 2 ≠ 0
Colors of variables: wff set class
Syntax hints:  wne 2377  0cc0 7955  2c2 9117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-xp 4694  df-iota 5246  df-fv 5293  df-ov 5965  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-2 9125
This theorem is referenced by:  0ne2  9272  2cnne0  9276  2rene0  9277  zeo3  12264  evend2  12285  oddp1d2  12286  3lcm2e6woprm  12493  2logb9irrALT  15531  lgseisenlem1  15632  lgsquad2lem1  15643  lgsquad3  15646  m1lgs  15647  apdiff  16159
  Copyright terms: Public domain W3C validator