![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3ne0 | GIF version |
Description: The number 3 is nonzero. (Contributed by FL, 17-Oct-2010.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
3ne0 | ⊢ 3 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 9046 | . 2 ⊢ 3 ∈ ℝ | |
2 | 3pos 9066 | . 2 ⊢ 0 < 3 | |
3 | 1, 2 | gt0ne0ii 8496 | 1 ⊢ 3 ≠ 0 |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2364 0cc0 7862 3c3 9024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4565 ax-cnex 7953 ax-resscn 7954 ax-1cn 7955 ax-1re 7956 ax-icn 7957 ax-addcl 7958 ax-addrcl 7959 ax-mulcl 7960 ax-addcom 7962 ax-addass 7964 ax-i2m1 7967 ax-0lt1 7968 ax-0id 7970 ax-rnegex 7971 ax-pre-ltirr 7974 ax-pre-lttrn 7976 ax-pre-ltadd 7978 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4661 df-iota 5207 df-fv 5254 df-ov 5913 df-pnf 8046 df-mnf 8047 df-ltxr 8049 df-2 9031 df-3 9032 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |