| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lfgrnloopen | GIF version | ||
| Description: A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021.) |
| Ref | Expression |
|---|---|
| lfuhgrnloopv.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| lfuhgrnloopv.a | ⊢ 𝐴 = dom 𝐼 |
| lfuhgrnloopv.e | ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} |
| Ref | Expression |
|---|---|
| lfgrnloopen | ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) ≈ 1o} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . . . 4 ⊢ Ⅎ𝑥𝐼 | |
| 2 | nfcv 2372 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | lfuhgrnloopv.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} | |
| 4 | nfrab1 2711 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} | |
| 5 | 3, 4 | nfcxfr 2369 | . . . 4 ⊢ Ⅎ𝑥𝐸 |
| 6 | 1, 2, 5 | nff 5469 | . . 3 ⊢ Ⅎ𝑥 𝐼:𝐴⟶𝐸 |
| 7 | lfuhgrnloopv.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 8 | lfuhgrnloopv.a | . . . . . 6 ⊢ 𝐴 = dom 𝐼 | |
| 9 | 7, 8, 3 | lfgredg2dom 15924 | . . . . 5 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑥 ∈ 𝐴) → 2o ≼ (𝐼‘𝑥)) |
| 10 | 1ndom2 7022 | . . . . . 6 ⊢ ¬ 2o ≼ 1o | |
| 11 | domentr 6941 | . . . . . . 7 ⊢ ((2o ≼ (𝐼‘𝑥) ∧ (𝐼‘𝑥) ≈ 1o) → 2o ≼ 1o) | |
| 12 | 11 | ex 115 | . . . . . 6 ⊢ (2o ≼ (𝐼‘𝑥) → ((𝐼‘𝑥) ≈ 1o → 2o ≼ 1o)) |
| 13 | 10, 12 | mtoi 668 | . . . . 5 ⊢ (2o ≼ (𝐼‘𝑥) → ¬ (𝐼‘𝑥) ≈ 1o) |
| 14 | 9, 13 | syl 14 | . . . 4 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑥 ∈ 𝐴) → ¬ (𝐼‘𝑥) ≈ 1o) |
| 15 | 14 | ex 115 | . . 3 ⊢ (𝐼:𝐴⟶𝐸 → (𝑥 ∈ 𝐴 → ¬ (𝐼‘𝑥) ≈ 1o)) |
| 16 | 6, 15 | ralrimi 2601 | . 2 ⊢ (𝐼:𝐴⟶𝐸 → ∀𝑥 ∈ 𝐴 ¬ (𝐼‘𝑥) ≈ 1o) |
| 17 | rabeq0 3521 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) ≈ 1o} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐼‘𝑥) ≈ 1o) | |
| 18 | 16, 17 | sylibr 134 | 1 ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) ≈ 1o} = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 {crab 2512 ∅c0 3491 𝒫 cpw 3649 class class class wbr 4082 dom cdm 4718 ⟶wf 5313 ‘cfv 5317 1oc1o 6553 2oc2o 6554 ≈ cen 6883 ≼ cdom 6884 iEdgciedg 15808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1o 6560 df-2o 6561 df-er 6678 df-en 6886 df-dom 6887 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |