| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lfgrnloopen | GIF version | ||
| Description: A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021.) |
| Ref | Expression |
|---|---|
| lfuhgrnloopv.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| lfuhgrnloopv.a | ⊢ 𝐴 = dom 𝐼 |
| lfuhgrnloopv.e | ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} |
| Ref | Expression |
|---|---|
| lfgrnloopen | ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) ≈ 1o} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2349 | . . . 4 ⊢ Ⅎ𝑥𝐼 | |
| 2 | nfcv 2349 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | lfuhgrnloopv.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} | |
| 4 | nfrab1 2687 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} | |
| 5 | 3, 4 | nfcxfr 2346 | . . . 4 ⊢ Ⅎ𝑥𝐸 |
| 6 | 1, 2, 5 | nff 5437 | . . 3 ⊢ Ⅎ𝑥 𝐼:𝐴⟶𝐸 |
| 7 | lfuhgrnloopv.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 8 | lfuhgrnloopv.a | . . . . . 6 ⊢ 𝐴 = dom 𝐼 | |
| 9 | 7, 8, 3 | lfgredg2dom 15808 | . . . . 5 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑥 ∈ 𝐴) → 2o ≼ (𝐼‘𝑥)) |
| 10 | 1ndom2 6982 | . . . . . 6 ⊢ ¬ 2o ≼ 1o | |
| 11 | domentr 6901 | . . . . . . 7 ⊢ ((2o ≼ (𝐼‘𝑥) ∧ (𝐼‘𝑥) ≈ 1o) → 2o ≼ 1o) | |
| 12 | 11 | ex 115 | . . . . . 6 ⊢ (2o ≼ (𝐼‘𝑥) → ((𝐼‘𝑥) ≈ 1o → 2o ≼ 1o)) |
| 13 | 10, 12 | mtoi 666 | . . . . 5 ⊢ (2o ≼ (𝐼‘𝑥) → ¬ (𝐼‘𝑥) ≈ 1o) |
| 14 | 9, 13 | syl 14 | . . . 4 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑥 ∈ 𝐴) → ¬ (𝐼‘𝑥) ≈ 1o) |
| 15 | 14 | ex 115 | . . 3 ⊢ (𝐼:𝐴⟶𝐸 → (𝑥 ∈ 𝐴 → ¬ (𝐼‘𝑥) ≈ 1o)) |
| 16 | 6, 15 | ralrimi 2578 | . 2 ⊢ (𝐼:𝐴⟶𝐸 → ∀𝑥 ∈ 𝐴 ¬ (𝐼‘𝑥) ≈ 1o) |
| 17 | rabeq0 3494 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) ≈ 1o} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐼‘𝑥) ≈ 1o) | |
| 18 | 16, 17 | sylibr 134 | 1 ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) ≈ 1o} = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 {crab 2489 ∅c0 3464 𝒫 cpw 3621 class class class wbr 4054 dom cdm 4688 ⟶wf 5281 ‘cfv 5285 1oc1o 6513 2oc2o 6514 ≈ cen 6843 ≼ cdom 6844 iEdgciedg 15697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-1o 6520 df-2o 6521 df-er 6638 df-en 6846 df-dom 6847 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |