ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  umgrislfupgrdom GIF version

Theorem umgrislfupgrdom 15807
Description: A multigraph is a loop-free pseudograph. (Contributed by AV, 27-Jan-2021.)
Hypotheses
Ref Expression
umgrislfupgr.v 𝑉 = (Vtx‘𝐺)
umgrislfupgr.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
umgrislfupgrdom (𝐺 ∈ UMGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem umgrislfupgrdom
StepHypRef Expression
1 umgrupgr 15793 . . 3 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)
2 umgrislfupgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
3 umgrislfupgr.i . . . . 5 𝐼 = (iEdg‘𝐺)
42, 3umgrfen 15788 . . . 4 (𝐺 ∈ UMGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o})
5 id 19 . . . . 5 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o})
6 ensymb 6890 . . . . . . . . 9 (2o𝑥𝑥 ≈ 2o)
7 endom 6872 . . . . . . . . 9 (2o𝑥 → 2o𝑥)
86, 7sylbir 135 . . . . . . . 8 (𝑥 ≈ 2o → 2o𝑥)
98a1i 9 . . . . . . 7 (𝑥 ∈ 𝒫 𝑉 → (𝑥 ≈ 2o → 2o𝑥))
109ss2rabi 3279 . . . . . 6 {𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}
1110a1i 9 . . . . 5 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o} → {𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥})
125, 11fssd 5453 . . . 4 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥})
134, 12syl 14 . . 3 (𝐺 ∈ UMGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥})
141, 13jca 306 . 2 (𝐺 ∈ UMGraph → (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}))
152, 3upgrfen 15778 . . . 4 (𝐺 ∈ UPGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)})
16 fin 5479 . . . . 5 (𝐼:dom 𝐼⟶({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}) ↔ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}))
17 umgrislfupgrenlem 15806 . . . . . 6 ({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}) = {𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o}
18 feq3 5425 . . . . . 6 (({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}) = {𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o} → (𝐼:dom 𝐼⟶({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}) ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o}))
1917, 18ax-mp 5 . . . . 5 (𝐼:dom 𝐼⟶({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}) ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o})
2016, 19sylbb1 137 . . . 4 ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o})
2115, 20sylan 283 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o})
222, 3isumgren 15786 . . . 4 (𝐺 ∈ UPGraph → (𝐺 ∈ UMGraph ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o}))
2322adantr 276 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}) → (𝐺 ∈ UMGraph ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o}))
2421, 23mpbird 167 . 2 ((𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}) → 𝐺 ∈ UMGraph)
2514, 24impbii 126 1 (𝐺 ∈ UMGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  {crab 2489  cin 3169  wss 3170  𝒫 cpw 3621   class class class wbr 4054  dom cdm 4688  wf 5281  cfv 5285  1oc1o 6513  2oc2o 6514  cen 6843  cdom 6844  Vtxcvtx 15696  iEdgciedg 15697  UPGraphcupgr 15772  UMGraphcumgr 15773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-1o 6520  df-2o 6521  df-er 6638  df-en 6846  df-dom 6847  df-sub 8275  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-7 9130  df-8 9131  df-9 9132  df-n0 9326  df-dec 9535  df-ndx 12920  df-slot 12921  df-base 12923  df-edgf 15689  df-vtx 15698  df-iedg 15699  df-upgren 15774  df-umgren 15775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator