| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > umgrislfupgrdom | GIF version | ||
| Description: A multigraph is a loop-free pseudograph. (Contributed by AV, 27-Jan-2021.) |
| Ref | Expression |
|---|---|
| umgrislfupgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| umgrislfupgr.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| umgrislfupgrdom | ⊢ (𝐺 ∈ UMGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrupgr 15906 | . . 3 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) | |
| 2 | umgrislfupgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | umgrislfupgr.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 4 | 2, 3 | umgrfen 15901 | . . . 4 ⊢ (𝐺 ∈ UMGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 5 | id 19 | . . . . 5 ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) | |
| 6 | ensymb 6930 | . . . . . . . . 9 ⊢ (2o ≈ 𝑥 ↔ 𝑥 ≈ 2o) | |
| 7 | endom 6912 | . . . . . . . . 9 ⊢ (2o ≈ 𝑥 → 2o ≼ 𝑥) | |
| 8 | 6, 7 | sylbir 135 | . . . . . . . 8 ⊢ (𝑥 ≈ 2o → 2o ≼ 𝑥) |
| 9 | 8 | a1i 9 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 𝑉 → (𝑥 ≈ 2o → 2o ≼ 𝑥)) |
| 10 | 9 | ss2rabi 3306 | . . . . . 6 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} |
| 11 | 10 | a1i 9 | . . . . 5 ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) |
| 12 | 5, 11 | fssd 5485 | . . . 4 ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) |
| 13 | 4, 12 | syl 14 | . . 3 ⊢ (𝐺 ∈ UMGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) |
| 14 | 1, 13 | jca 306 | . 2 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥})) |
| 15 | 2, 3 | upgrfen 15891 | . . . 4 ⊢ (𝐺 ∈ UPGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 16 | fin 5511 | . . . . 5 ⊢ (𝐼:dom 𝐼⟶({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) ↔ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥})) | |
| 17 | umgrislfupgrenlem 15922 | . . . . . 6 ⊢ ({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) = {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} | |
| 18 | feq3 5457 | . . . . . 6 ⊢ (({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) = {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → (𝐼:dom 𝐼⟶({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) | |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ (𝐼:dom 𝐼⟶({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 20 | 16, 19 | sylbb1 137 | . . . 4 ⊢ ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 21 | 15, 20 | sylan 283 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 22 | 2, 3 | isumgren 15899 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (𝐺 ∈ UMGraph ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 23 | 22 | adantr 276 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) → (𝐺 ∈ UMGraph ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 24 | 21, 23 | mpbird 167 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) → 𝐺 ∈ UMGraph) |
| 25 | 14, 24 | impbii 126 | 1 ⊢ (𝐺 ∈ UMGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 {crab 2512 ∩ cin 3196 ⊆ wss 3197 𝒫 cpw 3649 class class class wbr 4082 dom cdm 4718 ⟶wf 5313 ‘cfv 5317 1oc1o 6553 2oc2o 6554 ≈ cen 6883 ≼ cdom 6884 Vtxcvtx 15807 iEdgciedg 15808 UPGraphcupgr 15885 UMGraphcumgr 15886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-1o 6560 df-2o 6561 df-er 6678 df-en 6886 df-dom 6887 df-sub 8315 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-dec 9575 df-ndx 13030 df-slot 13031 df-base 13033 df-edgf 15800 df-vtx 15809 df-iedg 15810 df-upgren 15887 df-umgren 15888 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |