| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > umgrislfupgrdom | GIF version | ||
| Description: A multigraph is a loop-free pseudograph. (Contributed by AV, 27-Jan-2021.) |
| Ref | Expression |
|---|---|
| umgrislfupgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| umgrislfupgr.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| umgrislfupgrdom | ⊢ (𝐺 ∈ UMGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrupgr 15793 | . . 3 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) | |
| 2 | umgrislfupgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | umgrislfupgr.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 4 | 2, 3 | umgrfen 15788 | . . . 4 ⊢ (𝐺 ∈ UMGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 5 | id 19 | . . . . 5 ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) | |
| 6 | ensymb 6890 | . . . . . . . . 9 ⊢ (2o ≈ 𝑥 ↔ 𝑥 ≈ 2o) | |
| 7 | endom 6872 | . . . . . . . . 9 ⊢ (2o ≈ 𝑥 → 2o ≼ 𝑥) | |
| 8 | 6, 7 | sylbir 135 | . . . . . . . 8 ⊢ (𝑥 ≈ 2o → 2o ≼ 𝑥) |
| 9 | 8 | a1i 9 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 𝑉 → (𝑥 ≈ 2o → 2o ≼ 𝑥)) |
| 10 | 9 | ss2rabi 3279 | . . . . . 6 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} |
| 11 | 10 | a1i 9 | . . . . 5 ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) |
| 12 | 5, 11 | fssd 5453 | . . . 4 ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) |
| 13 | 4, 12 | syl 14 | . . 3 ⊢ (𝐺 ∈ UMGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) |
| 14 | 1, 13 | jca 306 | . 2 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥})) |
| 15 | 2, 3 | upgrfen 15778 | . . . 4 ⊢ (𝐺 ∈ UPGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 16 | fin 5479 | . . . . 5 ⊢ (𝐼:dom 𝐼⟶({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) ↔ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥})) | |
| 17 | umgrislfupgrenlem 15806 | . . . . . 6 ⊢ ({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) = {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} | |
| 18 | feq3 5425 | . . . . . 6 ⊢ (({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) = {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → (𝐼:dom 𝐼⟶({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) | |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ (𝐼:dom 𝐼⟶({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 20 | 16, 19 | sylbb1 137 | . . . 4 ⊢ ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 21 | 15, 20 | sylan 283 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 22 | 2, 3 | isumgren 15786 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (𝐺 ∈ UMGraph ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 23 | 22 | adantr 276 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) → (𝐺 ∈ UMGraph ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 24 | 21, 23 | mpbird 167 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) → 𝐺 ∈ UMGraph) |
| 25 | 14, 24 | impbii 126 | 1 ⊢ (𝐺 ∈ UMGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 {crab 2489 ∩ cin 3169 ⊆ wss 3170 𝒫 cpw 3621 class class class wbr 4054 dom cdm 4688 ⟶wf 5281 ‘cfv 5285 1oc1o 6513 2oc2o 6514 ≈ cen 6843 ≼ cdom 6844 Vtxcvtx 15696 iEdgciedg 15697 UPGraphcupgr 15772 UMGraphcumgr 15773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-1o 6520 df-2o 6521 df-er 6638 df-en 6846 df-dom 6847 df-sub 8275 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-7 9130 df-8 9131 df-9 9132 df-n0 9326 df-dec 9535 df-ndx 12920 df-slot 12921 df-base 12923 df-edgf 15689 df-vtx 15698 df-iedg 15699 df-upgren 15774 df-umgren 15775 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |