ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgt0i GIF version

Theorem mulgt0i 8069
Description: The product of two positive numbers is positive. (Contributed by NM, 16-May-1999.)
Hypotheses
Ref Expression
lt.1 ๐ด โˆˆ โ„
lt.2 ๐ต โˆˆ โ„
Assertion
Ref Expression
mulgt0i ((0 < ๐ด โˆง 0 < ๐ต) โ†’ 0 < (๐ด ยท ๐ต))

Proof of Theorem mulgt0i
StepHypRef Expression
1 lt.1 . 2 ๐ด โˆˆ โ„
2 lt.2 . 2 ๐ต โˆˆ โ„
3 axmulgt0 8031 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ ((0 < ๐ด โˆง 0 < ๐ต) โ†’ 0 < (๐ด ยท ๐ต)))
41, 2, 3mp2an 426 1 ((0 < ๐ด โˆง 0 < ๐ต) โ†’ 0 < (๐ด ยท ๐ต))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โˆˆ wcel 2148   class class class wbr 4005  (class class class)co 5877  โ„cr 7812  0cc0 7813   ยท cmul 7818   < clt 7994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910  ax-mulrcl 7912  ax-rnegex 7922  ax-pre-mulgt0 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-pnf 7996  df-mnf 7997  df-ltxr 7999
This theorem is referenced by:  mulgt0ii  8070
  Copyright terms: Public domain W3C validator