ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnrd GIF version

Theorem ltnrd 8138
Description: 'Less than' is irreflexive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
ltnrd (𝜑 → ¬ 𝐴 < 𝐴)

Proof of Theorem ltnrd
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnr 8103 . 2 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
31, 2syl 14 1 (𝜑 → ¬ 𝐴 < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2167   class class class wbr 4033  cr 7878   < clt 8061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-pnf 8063  df-mnf 8064  df-ltxr 8066
This theorem is referenced by:  fzonel  10236  infssuzex  10323  frec2uzlt2d  10496  frec2uzf1od  10498  zfz1isolemiso  10931  recvguniqlem  11159  resqrexlemoverl  11186  leabs  11239  ltabs  11252  maxleim  11370  climuni  11458  znnen  12615  dedekindeulemeu  14858  dedekindicclemeu  14867  ivthinc  14879  limcimo  14901  efltlemlt  15010  taupi  15717
  Copyright terms: Public domain W3C validator