ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnrd GIF version

Theorem ltnrd 8258
Description: 'Less than' is irreflexive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
ltnrd (𝜑 → ¬ 𝐴 < 𝐴)

Proof of Theorem ltnrd
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnr 8223 . 2 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
31, 2syl 14 1 (𝜑 → ¬ 𝐴 < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2200   class class class wbr 4083  cr 7998   < clt 8181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltirr 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-pnf 8183  df-mnf 8184  df-ltxr 8186
This theorem is referenced by:  fzonel  10357  infssuzex  10453  frec2uzlt2d  10626  frec2uzf1od  10628  zfz1isolemiso  11061  recvguniqlem  11505  resqrexlemoverl  11532  leabs  11585  ltabs  11598  maxleim  11716  climuni  11804  znnen  12969  dedekindeulemeu  15296  dedekindicclemeu  15305  ivthinc  15317  limcimo  15339  efltlemlt  15448  taupi  16441
  Copyright terms: Public domain W3C validator