| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltnrd | GIF version | ||
| Description: 'Less than' is irreflexive. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| ltnrd | ⊢ (𝜑 → ¬ 𝐴 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltnr 8151 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ¬ 𝐴 < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2176 class class class wbr 4045 ℝcr 7926 < clt 8109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-pre-ltirr 8039 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-pnf 8111 df-mnf 8112 df-ltxr 8114 |
| This theorem is referenced by: fzonel 10285 infssuzex 10378 frec2uzlt2d 10551 frec2uzf1od 10553 zfz1isolemiso 10986 recvguniqlem 11338 resqrexlemoverl 11365 leabs 11418 ltabs 11431 maxleim 11549 climuni 11637 znnen 12802 dedekindeulemeu 15127 dedekindicclemeu 15136 ivthinc 15148 limcimo 15170 efltlemlt 15279 taupi 16049 |
| Copyright terms: Public domain | W3C validator |