ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnrd GIF version

Theorem ltnrd 8157
Description: 'Less than' is irreflexive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
ltnrd (𝜑 → ¬ 𝐴 < 𝐴)

Proof of Theorem ltnrd
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnr 8122 . 2 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
31, 2syl 14 1 (𝜑 → ¬ 𝐴 < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2167   class class class wbr 4034  cr 7897   < clt 8080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-pre-ltirr 8010
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-pnf 8082  df-mnf 8083  df-ltxr 8085
This theorem is referenced by:  fzonel  10255  infssuzex  10342  frec2uzlt2d  10515  frec2uzf1od  10517  zfz1isolemiso  10950  recvguniqlem  11178  resqrexlemoverl  11205  leabs  11258  ltabs  11271  maxleim  11389  climuni  11477  znnen  12642  dedekindeulemeu  14966  dedekindicclemeu  14975  ivthinc  14987  limcimo  15009  efltlemlt  15118  taupi  15830
  Copyright terms: Public domain W3C validator