ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnrd GIF version

Theorem ltnrd 8133
Description: 'Less than' is irreflexive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
ltnrd (𝜑 → ¬ 𝐴 < 𝐴)

Proof of Theorem ltnrd
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnr 8098 . 2 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
31, 2syl 14 1 (𝜑 → ¬ 𝐴 < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2164   class class class wbr 4030  cr 7873   < clt 8056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-pre-ltirr 7986
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-pnf 8058  df-mnf 8059  df-ltxr 8061
This theorem is referenced by:  fzonel  10230  frec2uzlt2d  10478  frec2uzf1od  10480  zfz1isolemiso  10913  recvguniqlem  11141  resqrexlemoverl  11168  leabs  11221  ltabs  11234  maxleim  11352  climuni  11439  infssuzex  12089  znnen  12558  dedekindeulemeu  14801  dedekindicclemeu  14810  ivthinc  14822  limcimo  14844  efltlemlt  14950  taupi  15633
  Copyright terms: Public domain W3C validator