Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > deccl | GIF version |
Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
deccl.1 | ⊢ 𝐴 ∈ ℕ0 |
deccl.2 | ⊢ 𝐵 ∈ ℕ0 |
Ref | Expression |
---|---|
deccl | ⊢ ;𝐴𝐵 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 9317 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
2 | 9nn0 9132 | . . . 4 ⊢ 9 ∈ ℕ0 | |
3 | 1nn0 9124 | . . . 4 ⊢ 1 ∈ ℕ0 | |
4 | 2, 3 | nn0addcli 9145 | . . 3 ⊢ (9 + 1) ∈ ℕ0 |
5 | deccl.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
6 | deccl.2 | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
7 | 4, 5, 6 | numcl 9328 | . 2 ⊢ (((9 + 1) · 𝐴) + 𝐵) ∈ ℕ0 |
8 | 1, 7 | eqeltri 2237 | 1 ⊢ ;𝐴𝐵 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2135 (class class class)co 5839 1c1 7748 + caddc 7750 · cmul 7752 9c9 8909 ℕ0cn0 9108 ;cdc 9316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-14 2138 ax-ext 2146 ax-sep 4097 ax-pow 4150 ax-pr 4184 ax-setind 4511 ax-cnex 7838 ax-resscn 7839 ax-1cn 7840 ax-1re 7841 ax-icn 7842 ax-addcl 7843 ax-addrcl 7844 ax-mulcl 7845 ax-addcom 7847 ax-mulcom 7848 ax-addass 7849 ax-mulass 7850 ax-distr 7851 ax-i2m1 7852 ax-1rid 7854 ax-0id 7855 ax-rnegex 7856 ax-cnre 7858 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2726 df-sbc 2950 df-dif 3116 df-un 3118 df-in 3120 df-ss 3127 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-int 3822 df-br 3980 df-opab 4041 df-id 4268 df-xp 4607 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-iota 5150 df-fun 5187 df-fv 5193 df-riota 5795 df-ov 5842 df-oprab 5843 df-mpo 5844 df-sub 8065 df-inn 8852 df-2 8910 df-3 8911 df-4 8912 df-5 8913 df-6 8914 df-7 8915 df-8 8916 df-9 8917 df-n0 9109 df-dec 9317 |
This theorem is referenced by: 10nn0 9333 3declth 9347 3decltc 9348 decleh 9350 sq10 10619 3dvds2dec 11797 1kp2ke3k 13499 |
Copyright terms: Public domain | W3C validator |