ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0mulcli GIF version

Theorem nn0mulcli 8709
Description: Closure of multiplication of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
Hypotheses
Ref Expression
nn0addcl.1 𝑀 ∈ ℕ0
nn0addcl.2 𝑁 ∈ ℕ0
Assertion
Ref Expression
nn0mulcli (𝑀 · 𝑁) ∈ ℕ0

Proof of Theorem nn0mulcli
StepHypRef Expression
1 nn0addcl.1 . 2 𝑀 ∈ ℕ0
2 nn0addcl.2 . 2 𝑁 ∈ ℕ0
3 nn0mulcl 8707 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)
41, 2, 3mp2an 417 1 (𝑀 · 𝑁) ∈ ℕ0
Colors of variables: wff set class
Syntax hints:  wcel 1438  (class class class)co 5652   · cmul 7353  0cn0 8671
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-sub 7653  df-inn 8421  df-n0 8672
This theorem is referenced by:  numnncl  8884  num0u  8885  numcl  8887  numsuc  8888  numlt  8899  decle  8908  decrmanc  8931  decsubi  8937  decmul1  8938  decmulnc  8941  decmul10add  8943  expnass  10056
  Copyright terms: Public domain W3C validator