ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numcl GIF version

Theorem numcl 9450
Description: Closure for a decimal integer (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numnncl.1 𝑇 ∈ ℕ0
numnncl.2 𝐴 ∈ ℕ0
numcl.2 𝐵 ∈ ℕ0
Assertion
Ref Expression
numcl ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0

Proof of Theorem numcl
StepHypRef Expression
1 numnncl.1 . . 3 𝑇 ∈ ℕ0
2 numnncl.2 . . 3 𝐴 ∈ ℕ0
31, 2nn0mulcli 9268 . 2 (𝑇 · 𝐴) ∈ ℕ0
4 numcl.2 . 2 𝐵 ∈ ℕ0
53, 4nn0addcli 9267 1 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
Colors of variables: wff set class
Syntax hints:  wcel 2164  (class class class)co 5910   + caddc 7865   · cmul 7867  0cn0 9230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4565  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-addcom 7962  ax-mulcom 7963  ax-addass 7964  ax-mulass 7965  ax-distr 7966  ax-i2m1 7967  ax-1rid 7969  ax-0id 7970  ax-rnegex 7971  ax-cnre 7973
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-iota 5207  df-fun 5248  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-sub 8182  df-inn 8973  df-n0 9231
This theorem is referenced by:  deccl  9452  numma2c  9483  numadd  9484  numaddc  9485  nummul1c  9486  nummul2c  9487
  Copyright terms: Public domain W3C validator