Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axpre-apti | GIF version |
Description: Apartness of reals is
tight. Axiom for real and complex numbers,
derived from set theory. This construction-dependent theorem should not
be referenced directly; instead, use ax-pre-apti 7868.
(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-apti | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 7769 | . . 3 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
2 | elreal 7769 | . . 3 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
3 | breq1 3985 | . . . . . 6 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 〈𝑦, 0R〉)) | |
4 | breq2 3986 | . . . . . 6 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 〈𝑦, 0R〉 <ℝ 𝐴)) | |
5 | 3, 4 | orbi12d 783 | . . . . 5 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴))) |
6 | 5 | notbid 657 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (¬ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ ¬ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴))) |
7 | eqeq1 2172 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ 𝐴 = 〈𝑦, 0R〉)) | |
8 | 6, 7 | imbi12d 233 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((¬ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) → 〈𝑥, 0R〉 = 〈𝑦, 0R〉) ↔ (¬ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) → 𝐴 = 〈𝑦, 0R〉))) |
9 | breq2 3986 | . . . . . 6 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 𝐵)) | |
10 | breq1 3985 | . . . . . 6 ⊢ (〈𝑦, 0R〉 = 𝐵 → (〈𝑦, 0R〉 <ℝ 𝐴 ↔ 𝐵 <ℝ 𝐴)) | |
11 | 9, 10 | orbi12d 783 | . . . . 5 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) ↔ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
12 | 11 | notbid 657 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (¬ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) ↔ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
13 | eqeq2 2175 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 = 〈𝑦, 0R〉 ↔ 𝐴 = 𝐵)) | |
14 | 12, 13 | imbi12d 233 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((¬ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) → 𝐴 = 〈𝑦, 0R〉) ↔ (¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴) → 𝐴 = 𝐵))) |
15 | aptisr 7720 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ ¬ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥)) → 𝑥 = 𝑦) | |
16 | 15 | 3expia 1195 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (¬ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥) → 𝑥 = 𝑦)) |
17 | ltresr 7780 | . . . . . 6 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝑥 <R 𝑦) | |
18 | ltresr 7780 | . . . . . 6 ⊢ (〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 𝑦 <R 𝑥) | |
19 | 17, 18 | orbi12i 754 | . . . . 5 ⊢ ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥)) |
20 | 19 | notbii 658 | . . . 4 ⊢ (¬ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ ¬ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥)) |
21 | vex 2729 | . . . . 5 ⊢ 𝑥 ∈ V | |
22 | 21 | eqresr 7777 | . . . 4 ⊢ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ 𝑥 = 𝑦) |
23 | 16, 20, 22 | 3imtr4g 204 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (¬ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) → 〈𝑥, 0R〉 = 〈𝑦, 0R〉)) |
24 | 1, 2, 8, 14, 23 | 2gencl 2759 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴) → 𝐴 = 𝐵)) |
25 | 24 | 3impia 1190 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 〈cop 3579 class class class wbr 3982 Rcnr 7238 0Rc0r 7239 <R cltr 7244 ℝcr 7752 <ℝ cltrr 7757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-i1p 7408 df-iplp 7409 df-iltp 7411 df-enr 7667 df-nr 7668 df-ltr 7671 df-0r 7672 df-r 7763 df-lt 7766 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |