ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-apti GIF version

Theorem axpre-apti 7980
Description: Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-apti 8022.

(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-apti ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)

Proof of Theorem axpre-apti
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7923 . . 3 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 7923 . . 3 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 breq1 4046 . . . . . 6 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝐴 <𝑦, 0R⟩))
4 breq2 4047 . . . . . 6 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ <𝑥, 0R⟩ ↔ ⟨𝑦, 0R⟩ < 𝐴))
53, 4orbi12d 794 . . . . 5 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)))
65notbid 668 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (¬ (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ ¬ (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)))
7 eqeq1 2211 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ 𝐴 = ⟨𝑦, 0R⟩))
86, 7imbi12d 234 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((¬ (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) → ⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩) ↔ (¬ (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴) → 𝐴 = ⟨𝑦, 0R⟩)))
9 breq2 4047 . . . . . 6 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <𝑦, 0R⟩ ↔ 𝐴 < 𝐵))
10 breq1 4046 . . . . . 6 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ < 𝐴𝐵 < 𝐴))
119, 10orbi12d 794 . . . . 5 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴) ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1211notbid 668 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (¬ (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴) ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
13 eqeq2 2214 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 = ⟨𝑦, 0R⟩ ↔ 𝐴 = 𝐵))
1412, 13imbi12d 234 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((¬ (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴) → 𝐴 = ⟨𝑦, 0R⟩) ↔ (¬ (𝐴 < 𝐵𝐵 < 𝐴) → 𝐴 = 𝐵)))
15 aptisr 7874 . . . . 5 ((𝑥R𝑦R ∧ ¬ (𝑥 <R 𝑦𝑦 <R 𝑥)) → 𝑥 = 𝑦)
16153expia 1207 . . . 4 ((𝑥R𝑦R) → (¬ (𝑥 <R 𝑦𝑦 <R 𝑥) → 𝑥 = 𝑦))
17 ltresr 7934 . . . . . 6 (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦)
18 ltresr 7934 . . . . . 6 (⟨𝑦, 0R⟩ <𝑥, 0R⟩ ↔ 𝑦 <R 𝑥)
1917, 18orbi12i 765 . . . . 5 ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝑥 <R 𝑦𝑦 <R 𝑥))
2019notbii 669 . . . 4 (¬ (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ ¬ (𝑥 <R 𝑦𝑦 <R 𝑥))
21 vex 2774 . . . . 5 𝑥 ∈ V
2221eqresr 7931 . . . 4 (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ 𝑥 = 𝑦)
2316, 20, 223imtr4g 205 . . 3 ((𝑥R𝑦R) → (¬ (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) → ⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩))
241, 2, 8, 14, 232gencl 2804 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 < 𝐵𝐵 < 𝐴) → 𝐴 = 𝐵))
25243impia 1202 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  w3a 980   = wceq 1372  wcel 2175  cop 3635   class class class wbr 4043  Rcnr 7392  0Rc0r 7393   <R cltr 7398  cr 7906   < cltrr 7911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-2o 6493  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-mqqs 7445  df-1nqqs 7446  df-rq 7447  df-ltnqqs 7448  df-enq0 7519  df-nq0 7520  df-0nq0 7521  df-plq0 7522  df-mq0 7523  df-inp 7561  df-i1p 7562  df-iplp 7563  df-iltp 7565  df-enr 7821  df-nr 7822  df-ltr 7825  df-0r 7826  df-r 7917  df-lt 7920
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator