| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axpre-apti | GIF version | ||
| Description: Apartness of reals is
tight. Axiom for real and complex numbers,
derived from set theory. This construction-dependent theorem should not
be referenced directly; instead, use ax-pre-apti 8039.
(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axpre-apti | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 7940 | . . 3 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 2 | elreal 7940 | . . 3 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
| 3 | breq1 4046 | . . . . . 6 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 〈𝑦, 0R〉)) | |
| 4 | breq2 4047 | . . . . . 6 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 〈𝑦, 0R〉 <ℝ 𝐴)) | |
| 5 | 3, 4 | orbi12d 794 | . . . . 5 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴))) |
| 6 | 5 | notbid 668 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (¬ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ ¬ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴))) |
| 7 | eqeq1 2211 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ 𝐴 = 〈𝑦, 0R〉)) | |
| 8 | 6, 7 | imbi12d 234 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((¬ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) → 〈𝑥, 0R〉 = 〈𝑦, 0R〉) ↔ (¬ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) → 𝐴 = 〈𝑦, 0R〉))) |
| 9 | breq2 4047 | . . . . . 6 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 𝐵)) | |
| 10 | breq1 4046 | . . . . . 6 ⊢ (〈𝑦, 0R〉 = 𝐵 → (〈𝑦, 0R〉 <ℝ 𝐴 ↔ 𝐵 <ℝ 𝐴)) | |
| 11 | 9, 10 | orbi12d 794 | . . . . 5 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) ↔ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
| 12 | 11 | notbid 668 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (¬ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) ↔ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
| 13 | eqeq2 2214 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 = 〈𝑦, 0R〉 ↔ 𝐴 = 𝐵)) | |
| 14 | 12, 13 | imbi12d 234 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((¬ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) → 𝐴 = 〈𝑦, 0R〉) ↔ (¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴) → 𝐴 = 𝐵))) |
| 15 | aptisr 7891 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ ¬ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥)) → 𝑥 = 𝑦) | |
| 16 | 15 | 3expia 1207 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (¬ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥) → 𝑥 = 𝑦)) |
| 17 | ltresr 7951 | . . . . . 6 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝑥 <R 𝑦) | |
| 18 | ltresr 7951 | . . . . . 6 ⊢ (〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 𝑦 <R 𝑥) | |
| 19 | 17, 18 | orbi12i 765 | . . . . 5 ⊢ ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥)) |
| 20 | 19 | notbii 669 | . . . 4 ⊢ (¬ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ ¬ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥)) |
| 21 | vex 2774 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 22 | 21 | eqresr 7948 | . . . 4 ⊢ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ 𝑥 = 𝑦) |
| 23 | 16, 20, 22 | 3imtr4g 205 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (¬ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) → 〈𝑥, 0R〉 = 〈𝑦, 0R〉)) |
| 24 | 1, 2, 8, 14, 23 | 2gencl 2804 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴) → 𝐴 = 𝐵)) |
| 25 | 24 | 3impia 1202 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 〈cop 3635 class class class wbr 4043 Rcnr 7409 0Rc0r 7410 <R cltr 7415 ℝcr 7923 <ℝ cltrr 7928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4335 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-1o 6501 df-2o 6502 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-pli 7417 df-mi 7418 df-lti 7419 df-plpq 7456 df-mpq 7457 df-enq 7459 df-nqqs 7460 df-plqqs 7461 df-mqqs 7462 df-1nqqs 7463 df-rq 7464 df-ltnqqs 7465 df-enq0 7536 df-nq0 7537 df-0nq0 7538 df-plq0 7539 df-mq0 7540 df-inp 7578 df-i1p 7579 df-iplp 7580 df-iltp 7582 df-enr 7838 df-nr 7839 df-ltr 7842 df-0r 7843 df-r 7934 df-lt 7937 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |