ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-apti GIF version

Theorem axpre-apti 7686
Description: Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-apti 7728.

(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-apti ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)

Proof of Theorem axpre-apti
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7629 . . 3 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 7629 . . 3 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 breq1 3927 . . . . . 6 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝐴 <𝑦, 0R⟩))
4 breq2 3928 . . . . . 6 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ <𝑥, 0R⟩ ↔ ⟨𝑦, 0R⟩ < 𝐴))
53, 4orbi12d 782 . . . . 5 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)))
65notbid 656 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (¬ (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ ¬ (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)))
7 eqeq1 2144 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ 𝐴 = ⟨𝑦, 0R⟩))
86, 7imbi12d 233 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((¬ (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) → ⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩) ↔ (¬ (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴) → 𝐴 = ⟨𝑦, 0R⟩)))
9 breq2 3928 . . . . . 6 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <𝑦, 0R⟩ ↔ 𝐴 < 𝐵))
10 breq1 3927 . . . . . 6 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ < 𝐴𝐵 < 𝐴))
119, 10orbi12d 782 . . . . 5 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴) ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1211notbid 656 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (¬ (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴) ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
13 eqeq2 2147 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 = ⟨𝑦, 0R⟩ ↔ 𝐴 = 𝐵))
1412, 13imbi12d 233 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((¬ (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴) → 𝐴 = ⟨𝑦, 0R⟩) ↔ (¬ (𝐴 < 𝐵𝐵 < 𝐴) → 𝐴 = 𝐵)))
15 aptisr 7580 . . . . 5 ((𝑥R𝑦R ∧ ¬ (𝑥 <R 𝑦𝑦 <R 𝑥)) → 𝑥 = 𝑦)
16153expia 1183 . . . 4 ((𝑥R𝑦R) → (¬ (𝑥 <R 𝑦𝑦 <R 𝑥) → 𝑥 = 𝑦))
17 ltresr 7640 . . . . . 6 (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦)
18 ltresr 7640 . . . . . 6 (⟨𝑦, 0R⟩ <𝑥, 0R⟩ ↔ 𝑦 <R 𝑥)
1917, 18orbi12i 753 . . . . 5 ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝑥 <R 𝑦𝑦 <R 𝑥))
2019notbii 657 . . . 4 (¬ (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ ¬ (𝑥 <R 𝑦𝑦 <R 𝑥))
21 vex 2684 . . . . 5 𝑥 ∈ V
2221eqresr 7637 . . . 4 (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ 𝑥 = 𝑦)
2316, 20, 223imtr4g 204 . . 3 ((𝑥R𝑦R) → (¬ (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) → ⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩))
241, 2, 8, 14, 232gencl 2714 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 < 𝐵𝐵 < 𝐴) → 𝐴 = 𝐵))
25243impia 1178 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 697  w3a 962   = wceq 1331  wcel 1480  cop 3525   class class class wbr 3924  Rcnr 7098  0Rc0r 7099   <R cltr 7104  cr 7612   < cltrr 7617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-plq0 7228  df-mq0 7229  df-inp 7267  df-i1p 7268  df-iplp 7269  df-iltp 7271  df-enr 7527  df-nr 7528  df-ltr 7531  df-0r 7532  df-r 7623  df-lt 7626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator