![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > axpre-apti | GIF version |
Description: Apartness of reals is
tight. Axiom for real and complex numbers,
derived from set theory. This construction-dependent theorem should not
be referenced directly; instead, use ax-pre-apti 7989.
(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-apti | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 7890 | . . 3 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
2 | elreal 7890 | . . 3 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
3 | breq1 4033 | . . . . . 6 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 〈𝑦, 0R〉)) | |
4 | breq2 4034 | . . . . . 6 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 〈𝑦, 0R〉 <ℝ 𝐴)) | |
5 | 3, 4 | orbi12d 794 | . . . . 5 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴))) |
6 | 5 | notbid 668 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (¬ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ ¬ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴))) |
7 | eqeq1 2200 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ 𝐴 = 〈𝑦, 0R〉)) | |
8 | 6, 7 | imbi12d 234 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((¬ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) → 〈𝑥, 0R〉 = 〈𝑦, 0R〉) ↔ (¬ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) → 𝐴 = 〈𝑦, 0R〉))) |
9 | breq2 4034 | . . . . . 6 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 𝐵)) | |
10 | breq1 4033 | . . . . . 6 ⊢ (〈𝑦, 0R〉 = 𝐵 → (〈𝑦, 0R〉 <ℝ 𝐴 ↔ 𝐵 <ℝ 𝐴)) | |
11 | 9, 10 | orbi12d 794 | . . . . 5 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) ↔ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
12 | 11 | notbid 668 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (¬ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) ↔ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
13 | eqeq2 2203 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 = 〈𝑦, 0R〉 ↔ 𝐴 = 𝐵)) | |
14 | 12, 13 | imbi12d 234 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((¬ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) → 𝐴 = 〈𝑦, 0R〉) ↔ (¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴) → 𝐴 = 𝐵))) |
15 | aptisr 7841 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ ¬ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥)) → 𝑥 = 𝑦) | |
16 | 15 | 3expia 1207 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (¬ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥) → 𝑥 = 𝑦)) |
17 | ltresr 7901 | . . . . . 6 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝑥 <R 𝑦) | |
18 | ltresr 7901 | . . . . . 6 ⊢ (〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 𝑦 <R 𝑥) | |
19 | 17, 18 | orbi12i 765 | . . . . 5 ⊢ ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥)) |
20 | 19 | notbii 669 | . . . 4 ⊢ (¬ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ ¬ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥)) |
21 | vex 2763 | . . . . 5 ⊢ 𝑥 ∈ V | |
22 | 21 | eqresr 7898 | . . . 4 ⊢ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ 𝑥 = 𝑦) |
23 | 16, 20, 22 | 3imtr4g 205 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (¬ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) → 〈𝑥, 0R〉 = 〈𝑦, 0R〉)) |
24 | 1, 2, 8, 14, 23 | 2gencl 2793 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴) → 𝐴 = 𝐵)) |
25 | 24 | 3impia 1202 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 〈cop 3622 class class class wbr 4030 Rcnr 7359 0Rc0r 7360 <R cltr 7365 ℝcr 7873 <ℝ cltrr 7878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-1o 6471 df-2o 6472 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-pli 7367 df-mi 7368 df-lti 7369 df-plpq 7406 df-mpq 7407 df-enq 7409 df-nqqs 7410 df-plqqs 7411 df-mqqs 7412 df-1nqqs 7413 df-rq 7414 df-ltnqqs 7415 df-enq0 7486 df-nq0 7487 df-0nq0 7488 df-plq0 7489 df-mq0 7490 df-inp 7528 df-i1p 7529 df-iplp 7530 df-iltp 7532 df-enr 7788 df-nr 7789 df-ltr 7792 df-0r 7793 df-r 7884 df-lt 7887 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |