![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > axpre-apti | GIF version |
Description: Apartness of reals is
tight. Axiom for real and complex numbers,
derived from set theory. This construction-dependent theorem should not
be referenced directly; instead, use ax-pre-apti 7928.
(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-apti | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 7829 | . . 3 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) | |
2 | elreal 7829 | . . 3 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R ⟨𝑦, 0R⟩ = 𝐵) | |
3 | breq1 4008 | . . . . . 6 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ 𝐴 <ℝ ⟨𝑦, 0R⟩)) | |
4 | breq2 4009 | . . . . . 6 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩ ↔ ⟨𝑦, 0R⟩ <ℝ 𝐴)) | |
5 | 3, 4 | orbi12d 793 | . . . . 5 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) ↔ (𝐴 <ℝ ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴))) |
6 | 5 | notbid 667 | . . . 4 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (¬ (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) ↔ ¬ (𝐴 <ℝ ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴))) |
7 | eqeq1 2184 | . . . 4 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ 𝐴 = ⟨𝑦, 0R⟩)) | |
8 | 6, 7 | imbi12d 234 | . . 3 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → ((¬ (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) → ⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩) ↔ (¬ (𝐴 <ℝ ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴) → 𝐴 = ⟨𝑦, 0R⟩))) |
9 | breq2 4009 | . . . . . 6 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <ℝ ⟨𝑦, 0R⟩ ↔ 𝐴 <ℝ 𝐵)) | |
10 | breq1 4008 | . . . . . 6 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ <ℝ 𝐴 ↔ 𝐵 <ℝ 𝐴)) | |
11 | 9, 10 | orbi12d 793 | . . . . 5 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <ℝ ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴) ↔ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
12 | 11 | notbid 667 | . . . 4 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (¬ (𝐴 <ℝ ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴) ↔ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
13 | eqeq2 2187 | . . . 4 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 = ⟨𝑦, 0R⟩ ↔ 𝐴 = 𝐵)) | |
14 | 12, 13 | imbi12d 234 | . . 3 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → ((¬ (𝐴 <ℝ ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ 𝐴) → 𝐴 = ⟨𝑦, 0R⟩) ↔ (¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴) → 𝐴 = 𝐵))) |
15 | aptisr 7780 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ ¬ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥)) → 𝑥 = 𝑦) | |
16 | 15 | 3expia 1205 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (¬ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥) → 𝑥 = 𝑦)) |
17 | ltresr 7840 | . . . . . 6 ⊢ (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ 𝑥 <R 𝑦) | |
18 | ltresr 7840 | . . . . . 6 ⊢ (⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩ ↔ 𝑦 <R 𝑥) | |
19 | 17, 18 | orbi12i 764 | . . . . 5 ⊢ ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) ↔ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥)) |
20 | 19 | notbii 668 | . . . 4 ⊢ (¬ (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) ↔ ¬ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥)) |
21 | vex 2742 | . . . . 5 ⊢ 𝑥 ∈ V | |
22 | 21 | eqresr 7837 | . . . 4 ⊢ (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ 𝑥 = 𝑦) |
23 | 16, 20, 22 | 3imtr4g 205 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (¬ (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <ℝ ⟨𝑥, 0R⟩) → ⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩)) |
24 | 1, 2, 8, 14, 23 | 2gencl 2772 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴) → 𝐴 = 𝐵)) |
25 | 24 | 3impia 1200 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 708 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ⟨cop 3597 class class class wbr 4005 Rcnr 7298 0Rc0r 7299 <R cltr 7304 ℝcr 7812 <ℝ cltrr 7817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-1o 6419 df-2o 6420 df-oadd 6423 df-omul 6424 df-er 6537 df-ec 6539 df-qs 6543 df-ni 7305 df-pli 7306 df-mi 7307 df-lti 7308 df-plpq 7345 df-mpq 7346 df-enq 7348 df-nqqs 7349 df-plqqs 7350 df-mqqs 7351 df-1nqqs 7352 df-rq 7353 df-ltnqqs 7354 df-enq0 7425 df-nq0 7426 df-0nq0 7427 df-plq0 7428 df-mq0 7429 df-inp 7467 df-i1p 7468 df-iplp 7469 df-iltp 7471 df-enr 7727 df-nr 7728 df-ltr 7731 df-0r 7732 df-r 7823 df-lt 7826 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |