| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axpre-apti | GIF version | ||
| Description: Apartness of reals is
tight. Axiom for real and complex numbers,
derived from set theory. This construction-dependent theorem should not
be referenced directly; instead, use ax-pre-apti 8110.
(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axpre-apti | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 8011 | . . 3 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 2 | elreal 8011 | . . 3 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
| 3 | breq1 4085 | . . . . . 6 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 〈𝑦, 0R〉)) | |
| 4 | breq2 4086 | . . . . . 6 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 〈𝑦, 0R〉 <ℝ 𝐴)) | |
| 5 | 3, 4 | orbi12d 798 | . . . . 5 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴))) |
| 6 | 5 | notbid 671 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (¬ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ ¬ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴))) |
| 7 | eqeq1 2236 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ 𝐴 = 〈𝑦, 0R〉)) | |
| 8 | 6, 7 | imbi12d 234 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((¬ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) → 〈𝑥, 0R〉 = 〈𝑦, 0R〉) ↔ (¬ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) → 𝐴 = 〈𝑦, 0R〉))) |
| 9 | breq2 4086 | . . . . . 6 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 𝐵)) | |
| 10 | breq1 4085 | . . . . . 6 ⊢ (〈𝑦, 0R〉 = 𝐵 → (〈𝑦, 0R〉 <ℝ 𝐴 ↔ 𝐵 <ℝ 𝐴)) | |
| 11 | 9, 10 | orbi12d 798 | . . . . 5 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) ↔ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
| 12 | 11 | notbid 671 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (¬ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) ↔ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
| 13 | eqeq2 2239 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 = 〈𝑦, 0R〉 ↔ 𝐴 = 𝐵)) | |
| 14 | 12, 13 | imbi12d 234 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((¬ (𝐴 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 𝐴) → 𝐴 = 〈𝑦, 0R〉) ↔ (¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴) → 𝐴 = 𝐵))) |
| 15 | aptisr 7962 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ ¬ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥)) → 𝑥 = 𝑦) | |
| 16 | 15 | 3expia 1229 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (¬ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥) → 𝑥 = 𝑦)) |
| 17 | ltresr 8022 | . . . . . 6 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝑥 <R 𝑦) | |
| 18 | ltresr 8022 | . . . . . 6 ⊢ (〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 𝑦 <R 𝑥) | |
| 19 | 17, 18 | orbi12i 769 | . . . . 5 ⊢ ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥)) |
| 20 | 19 | notbii 672 | . . . 4 ⊢ (¬ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) ↔ ¬ (𝑥 <R 𝑦 ∨ 𝑦 <R 𝑥)) |
| 21 | vex 2802 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 22 | 21 | eqresr 8019 | . . . 4 ⊢ (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ 𝑥 = 𝑦) |
| 23 | 16, 20, 22 | 3imtr4g 205 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (¬ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∨ 〈𝑦, 0R〉 <ℝ 〈𝑥, 0R〉) → 〈𝑥, 0R〉 = 〈𝑦, 0R〉)) |
| 24 | 1, 2, 8, 14, 23 | 2gencl 2833 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴) → 𝐴 = 𝐵)) |
| 25 | 24 | 3impia 1224 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 〈cop 3669 class class class wbr 4082 Rcnr 7480 0Rc0r 7481 <R cltr 7486 ℝcr 7994 <ℝ cltrr 7999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-2o 6561 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-enq0 7607 df-nq0 7608 df-0nq0 7609 df-plq0 7610 df-mq0 7611 df-inp 7649 df-i1p 7650 df-iplp 7651 df-iltp 7653 df-enr 7909 df-nr 7910 df-ltr 7913 df-0r 7914 df-r 8005 df-lt 8008 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |