| Step | Hyp | Ref
| Expression |
| 1 | | djur 7135 |
. . 3
⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑦 ∈ 𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦 ∈ 𝐵 𝑥 = (inr‘𝑦))) |
| 2 | | simpr 110 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = (inl‘𝑦)) → 𝑥 = (inl‘𝑦)) |
| 3 | | df-inl 7113 |
. . . . . . . . 9
⊢ inl =
(𝑥 ∈ V ↦
〈∅, 𝑥〉) |
| 4 | | opeq2 3809 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → 〈∅, 𝑥〉 = 〈∅, 𝑦〉) |
| 5 | | elex 2774 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ V) |
| 6 | | 0ex 4160 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
| 7 | | vex 2766 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
| 8 | 6, 7 | opex 4262 |
. . . . . . . . . 10
⊢
〈∅, 𝑦〉 ∈ V |
| 9 | 8 | a1i 9 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐴 → 〈∅, 𝑦〉 ∈ V) |
| 10 | 3, 4, 5, 9 | fvmptd3 5655 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐴 → (inl‘𝑦) = 〈∅, 𝑦〉) |
| 11 | 10 | adantr 276 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = (inl‘𝑦)) → (inl‘𝑦) = 〈∅, 𝑦〉) |
| 12 | 2, 11 | eqtrd 2229 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = (inl‘𝑦)) → 𝑥 = 〈∅, 𝑦〉) |
| 13 | | elun1 3330 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ (𝐴 ∪ 𝐵)) |
| 14 | 6 | prid1 3728 |
. . . . . . . . 9
⊢ ∅
∈ {∅, 1o} |
| 15 | 13, 14 | jctil 312 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐴 → (∅ ∈ {∅,
1o} ∧ 𝑦
∈ (𝐴 ∪ 𝐵))) |
| 16 | 15 | adantr 276 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = (inl‘𝑦)) → (∅ ∈ {∅,
1o} ∧ 𝑦
∈ (𝐴 ∪ 𝐵))) |
| 17 | | opelxp 4693 |
. . . . . . 7
⊢
(〈∅, 𝑦〉 ∈ ({∅, 1o}
× (𝐴 ∪ 𝐵)) ↔ (∅ ∈
{∅, 1o} ∧ 𝑦 ∈ (𝐴 ∪ 𝐵))) |
| 18 | 16, 17 | sylibr 134 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = (inl‘𝑦)) → 〈∅, 𝑦〉 ∈ ({∅, 1o}
× (𝐴 ∪ 𝐵))) |
| 19 | 12, 18 | eqeltrd 2273 |
. . . . 5
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = (inl‘𝑦)) → 𝑥 ∈ ({∅, 1o} ×
(𝐴 ∪ 𝐵))) |
| 20 | 19 | rexlimiva 2609 |
. . . 4
⊢
(∃𝑦 ∈
𝐴 𝑥 = (inl‘𝑦) → 𝑥 ∈ ({∅, 1o} ×
(𝐴 ∪ 𝐵))) |
| 21 | | simpr 110 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → 𝑥 = (inr‘𝑦)) |
| 22 | | df-inr 7114 |
. . . . . . . . 9
⊢ inr =
(𝑥 ∈ V ↦
〈1o, 𝑥〉) |
| 23 | | opeq2 3809 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → 〈1o, 𝑥〉 = 〈1o,
𝑦〉) |
| 24 | | elex 2774 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ V) |
| 25 | | 1oex 6482 |
. . . . . . . . . . 11
⊢
1o ∈ V |
| 26 | 25, 7 | opex 4262 |
. . . . . . . . . 10
⊢
〈1o, 𝑦〉 ∈ V |
| 27 | 26 | a1i 9 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → 〈1o, 𝑦〉 ∈
V) |
| 28 | 22, 23, 24, 27 | fvmptd3 5655 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → (inr‘𝑦) = 〈1o, 𝑦〉) |
| 29 | 28 | adantr 276 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → (inr‘𝑦) = 〈1o, 𝑦〉) |
| 30 | 21, 29 | eqtrd 2229 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → 𝑥 = 〈1o, 𝑦〉) |
| 31 | | elun2 3331 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ (𝐴 ∪ 𝐵)) |
| 32 | 31 | adantr 276 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → 𝑦 ∈ (𝐴 ∪ 𝐵)) |
| 33 | 25 | prid2 3729 |
. . . . . . . 8
⊢
1o ∈ {∅, 1o} |
| 34 | 32, 33 | jctil 312 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → (1o ∈ {∅,
1o} ∧ 𝑦
∈ (𝐴 ∪ 𝐵))) |
| 35 | | opelxp 4693 |
. . . . . . 7
⊢
(〈1o, 𝑦〉 ∈ ({∅, 1o}
× (𝐴 ∪ 𝐵)) ↔ (1o ∈
{∅, 1o} ∧ 𝑦 ∈ (𝐴 ∪ 𝐵))) |
| 36 | 34, 35 | sylibr 134 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → 〈1o, 𝑦〉 ∈ ({∅,
1o} × (𝐴
∪ 𝐵))) |
| 37 | 30, 36 | eqeltrd 2273 |
. . . . 5
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → 𝑥 ∈ ({∅, 1o} ×
(𝐴 ∪ 𝐵))) |
| 38 | 37 | rexlimiva 2609 |
. . . 4
⊢
(∃𝑦 ∈
𝐵 𝑥 = (inr‘𝑦) → 𝑥 ∈ ({∅, 1o} ×
(𝐴 ∪ 𝐵))) |
| 39 | 20, 38 | jaoi 717 |
. . 3
⊢
((∃𝑦 ∈
𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦 ∈ 𝐵 𝑥 = (inr‘𝑦)) → 𝑥 ∈ ({∅, 1o} ×
(𝐴 ∪ 𝐵))) |
| 40 | 1, 39 | sylbi 121 |
. 2
⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → 𝑥 ∈ ({∅, 1o} ×
(𝐴 ∪ 𝐵))) |
| 41 | 40 | ssriv 3187 |
1
⊢ (𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} ×
(𝐴 ∪ 𝐵)) |