ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuss GIF version

Theorem djuss 6963
Description: A disjoint union is a subset of a Cartesian product. (Contributed by AV, 25-Jun-2022.)
Assertion
Ref Expression
djuss (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))

Proof of Theorem djuss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djur 6962 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (∃𝑦𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦𝐵 𝑥 = (inr‘𝑦)))
2 simpr 109 . . . . . . 7 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑥 = (inl‘𝑦))
3 df-inl 6940 . . . . . . . . 9 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
4 opeq2 3714 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨∅, 𝑥⟩ = ⟨∅, 𝑦⟩)
5 elex 2700 . . . . . . . . 9 (𝑦𝐴𝑦 ∈ V)
6 0ex 4063 . . . . . . . . . . 11 ∅ ∈ V
7 vex 2692 . . . . . . . . . . 11 𝑦 ∈ V
86, 7opex 4159 . . . . . . . . . 10 ⟨∅, 𝑦⟩ ∈ V
98a1i 9 . . . . . . . . 9 (𝑦𝐴 → ⟨∅, 𝑦⟩ ∈ V)
103, 4, 5, 9fvmptd3 5522 . . . . . . . 8 (𝑦𝐴 → (inl‘𝑦) = ⟨∅, 𝑦⟩)
1110adantr 274 . . . . . . 7 ((𝑦𝐴𝑥 = (inl‘𝑦)) → (inl‘𝑦) = ⟨∅, 𝑦⟩)
122, 11eqtrd 2173 . . . . . 6 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑥 = ⟨∅, 𝑦⟩)
13 elun1 3248 . . . . . . . . 9 (𝑦𝐴𝑦 ∈ (𝐴𝐵))
146prid1 3637 . . . . . . . . 9 ∅ ∈ {∅, 1o}
1513, 14jctil 310 . . . . . . . 8 (𝑦𝐴 → (∅ ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
1615adantr 274 . . . . . . 7 ((𝑦𝐴𝑥 = (inl‘𝑦)) → (∅ ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
17 opelxp 4577 . . . . . . 7 (⟨∅, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)) ↔ (∅ ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
1816, 17sylibr 133 . . . . . 6 ((𝑦𝐴𝑥 = (inl‘𝑦)) → ⟨∅, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)))
1912, 18eqeltrd 2217 . . . . 5 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
2019rexlimiva 2547 . . . 4 (∃𝑦𝐴 𝑥 = (inl‘𝑦) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
21 simpr 109 . . . . . . 7 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑥 = (inr‘𝑦))
22 df-inr 6941 . . . . . . . . 9 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
23 opeq2 3714 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨1o, 𝑥⟩ = ⟨1o, 𝑦⟩)
24 elex 2700 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ V)
25 1oex 6329 . . . . . . . . . . 11 1o ∈ V
2625, 7opex 4159 . . . . . . . . . 10 ⟨1o, 𝑦⟩ ∈ V
2726a1i 9 . . . . . . . . 9 (𝑦𝐵 → ⟨1o, 𝑦⟩ ∈ V)
2822, 23, 24, 27fvmptd3 5522 . . . . . . . 8 (𝑦𝐵 → (inr‘𝑦) = ⟨1o, 𝑦⟩)
2928adantr 274 . . . . . . 7 ((𝑦𝐵𝑥 = (inr‘𝑦)) → (inr‘𝑦) = ⟨1o, 𝑦⟩)
3021, 29eqtrd 2173 . . . . . 6 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑥 = ⟨1o, 𝑦⟩)
31 elun2 3249 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ (𝐴𝐵))
3231adantr 274 . . . . . . . 8 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑦 ∈ (𝐴𝐵))
3325prid2 3638 . . . . . . . 8 1o ∈ {∅, 1o}
3432, 33jctil 310 . . . . . . 7 ((𝑦𝐵𝑥 = (inr‘𝑦)) → (1o ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
35 opelxp 4577 . . . . . . 7 (⟨1o, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)) ↔ (1o ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
3634, 35sylibr 133 . . . . . 6 ((𝑦𝐵𝑥 = (inr‘𝑦)) → ⟨1o, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)))
3730, 36eqeltrd 2217 . . . . 5 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
3837rexlimiva 2547 . . . 4 (∃𝑦𝐵 𝑥 = (inr‘𝑦) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
3920, 38jaoi 706 . . 3 ((∃𝑦𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦𝐵 𝑥 = (inr‘𝑦)) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
401, 39sylbi 120 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
4140ssriv 3106 1 (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wo 698   = wceq 1332  wcel 1481  wrex 2418  Vcvv 2689  cun 3074  wss 3076  c0 3368  {cpr 3533  cop 3535   × cxp 4545  cfv 5131  1oc1o 6314  cdju 6930  inlcinl 6938  inrcinr 6939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047  df-1o 6321  df-dju 6931  df-inl 6940  df-inr 6941
This theorem is referenced by:  eldju1st  6964
  Copyright terms: Public domain W3C validator