ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuss GIF version

Theorem djuss 7129
Description: A disjoint union is a subset of a Cartesian product. (Contributed by AV, 25-Jun-2022.)
Assertion
Ref Expression
djuss (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))

Proof of Theorem djuss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djur 7128 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (∃𝑦𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦𝐵 𝑥 = (inr‘𝑦)))
2 simpr 110 . . . . . . 7 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑥 = (inl‘𝑦))
3 df-inl 7106 . . . . . . . . 9 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
4 opeq2 3805 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨∅, 𝑥⟩ = ⟨∅, 𝑦⟩)
5 elex 2771 . . . . . . . . 9 (𝑦𝐴𝑦 ∈ V)
6 0ex 4156 . . . . . . . . . . 11 ∅ ∈ V
7 vex 2763 . . . . . . . . . . 11 𝑦 ∈ V
86, 7opex 4258 . . . . . . . . . 10 ⟨∅, 𝑦⟩ ∈ V
98a1i 9 . . . . . . . . 9 (𝑦𝐴 → ⟨∅, 𝑦⟩ ∈ V)
103, 4, 5, 9fvmptd3 5651 . . . . . . . 8 (𝑦𝐴 → (inl‘𝑦) = ⟨∅, 𝑦⟩)
1110adantr 276 . . . . . . 7 ((𝑦𝐴𝑥 = (inl‘𝑦)) → (inl‘𝑦) = ⟨∅, 𝑦⟩)
122, 11eqtrd 2226 . . . . . 6 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑥 = ⟨∅, 𝑦⟩)
13 elun1 3326 . . . . . . . . 9 (𝑦𝐴𝑦 ∈ (𝐴𝐵))
146prid1 3724 . . . . . . . . 9 ∅ ∈ {∅, 1o}
1513, 14jctil 312 . . . . . . . 8 (𝑦𝐴 → (∅ ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
1615adantr 276 . . . . . . 7 ((𝑦𝐴𝑥 = (inl‘𝑦)) → (∅ ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
17 opelxp 4689 . . . . . . 7 (⟨∅, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)) ↔ (∅ ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
1816, 17sylibr 134 . . . . . 6 ((𝑦𝐴𝑥 = (inl‘𝑦)) → ⟨∅, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)))
1912, 18eqeltrd 2270 . . . . 5 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
2019rexlimiva 2606 . . . 4 (∃𝑦𝐴 𝑥 = (inl‘𝑦) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
21 simpr 110 . . . . . . 7 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑥 = (inr‘𝑦))
22 df-inr 7107 . . . . . . . . 9 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
23 opeq2 3805 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨1o, 𝑥⟩ = ⟨1o, 𝑦⟩)
24 elex 2771 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ V)
25 1oex 6477 . . . . . . . . . . 11 1o ∈ V
2625, 7opex 4258 . . . . . . . . . 10 ⟨1o, 𝑦⟩ ∈ V
2726a1i 9 . . . . . . . . 9 (𝑦𝐵 → ⟨1o, 𝑦⟩ ∈ V)
2822, 23, 24, 27fvmptd3 5651 . . . . . . . 8 (𝑦𝐵 → (inr‘𝑦) = ⟨1o, 𝑦⟩)
2928adantr 276 . . . . . . 7 ((𝑦𝐵𝑥 = (inr‘𝑦)) → (inr‘𝑦) = ⟨1o, 𝑦⟩)
3021, 29eqtrd 2226 . . . . . 6 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑥 = ⟨1o, 𝑦⟩)
31 elun2 3327 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ (𝐴𝐵))
3231adantr 276 . . . . . . . 8 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑦 ∈ (𝐴𝐵))
3325prid2 3725 . . . . . . . 8 1o ∈ {∅, 1o}
3432, 33jctil 312 . . . . . . 7 ((𝑦𝐵𝑥 = (inr‘𝑦)) → (1o ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
35 opelxp 4689 . . . . . . 7 (⟨1o, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)) ↔ (1o ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
3634, 35sylibr 134 . . . . . 6 ((𝑦𝐵𝑥 = (inr‘𝑦)) → ⟨1o, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)))
3730, 36eqeltrd 2270 . . . . 5 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
3837rexlimiva 2606 . . . 4 (∃𝑦𝐵 𝑥 = (inr‘𝑦) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
3920, 38jaoi 717 . . 3 ((∃𝑦𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦𝐵 𝑥 = (inr‘𝑦)) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
401, 39sylbi 121 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
4140ssriv 3183 1 (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wo 709   = wceq 1364  wcel 2164  wrex 2473  Vcvv 2760  cun 3151  wss 3153  c0 3446  {cpr 3619  cop 3621   × cxp 4657  cfv 5254  1oc1o 6462  cdju 7096  inlcinl 7104  inrcinr 7105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-dju 7097  df-inl 7106  df-inr 7107
This theorem is referenced by:  eldju1st  7130
  Copyright terms: Public domain W3C validator