| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidlpo | GIF version | ||
| Description: Excluded middle implies the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 29-Mar-2023.) |
| Ref | Expression |
|---|---|
| exmidlpo | ⊢ (EXMID → ω ∈ Omni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidomni 7258 | . 2 ⊢ (EXMID ↔ ∀𝑥 𝑥 ∈ Omni) | |
| 2 | omex 4648 | . . 3 ⊢ ω ∈ V | |
| 3 | eleq1 2269 | . . 3 ⊢ (𝑥 = ω → (𝑥 ∈ Omni ↔ ω ∈ Omni)) | |
| 4 | 2, 3 | spcv 2871 | . 2 ⊢ (∀𝑥 𝑥 ∈ Omni → ω ∈ Omni) |
| 5 | 1, 4 | sylbi 121 | 1 ⊢ (EXMID → ω ∈ Omni) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 ∈ wcel 2177 EXMIDwem 4245 ωcom 4645 Omnicomni 7250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-iinf 4643 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-opab 4113 df-mpt 4114 df-exmid 4246 df-id 4347 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-fv 5287 df-1o 6514 df-2o 6515 df-omni 7251 |
| This theorem is referenced by: exmidmp 7273 |
| Copyright terms: Public domain | W3C validator |