![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exmidlpo | GIF version |
Description: Excluded middle implies the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 29-Mar-2023.) |
Ref | Expression |
---|---|
exmidlpo | ⊢ (EXMID → ω ∈ Omni) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidomni 7191 | . 2 ⊢ (EXMID ↔ ∀𝑥 𝑥 ∈ Omni) | |
2 | omex 4621 | . . 3 ⊢ ω ∈ V | |
3 | eleq1 2256 | . . 3 ⊢ (𝑥 = ω → (𝑥 ∈ Omni ↔ ω ∈ Omni)) | |
4 | 2, 3 | spcv 2854 | . 2 ⊢ (∀𝑥 𝑥 ∈ Omni → ω ∈ Omni) |
5 | 1, 4 | sylbi 121 | 1 ⊢ (EXMID → ω ∈ Omni) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 ∈ wcel 2164 EXMIDwem 4223 ωcom 4618 Omnicomni 7183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-iinf 4616 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-exmid 4224 df-id 4322 df-suc 4400 df-iom 4619 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-rn 4666 df-iota 5207 df-fun 5248 df-fn 5249 df-f 5250 df-fv 5254 df-1o 6460 df-2o 6461 df-omni 7184 |
This theorem is referenced by: exmidmp 7206 |
Copyright terms: Public domain | W3C validator |