ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgtfr GIF version

Theorem rdgtfr 6429
Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 14-May-2020.)
Assertion
Ref Expression
rdgtfr ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
Distinct variable groups:   𝐴,𝑔   𝑥,𝑔,𝑧,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑧,𝑓)   𝐹(𝑓)   𝑉(𝑥,𝑧,𝑓,𝑔)

Proof of Theorem rdgtfr
StepHypRef Expression
1 elex 2771 . 2 (𝐴𝑉𝐴 ∈ V)
2 funmpt 5293 . . . 4 Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
3 vex 2763 . . . . 5 𝑓 ∈ V
4 vex 2763 . . . . . . . . . . 11 𝑔 ∈ V
54dmex 4929 . . . . . . . . . 10 dom 𝑔 ∈ V
6 vex 2763 . . . . . . . . . . . . 13 𝑥 ∈ V
74, 6fvex 5575 . . . . . . . . . . . 12 (𝑔𝑥) ∈ V
8 fveq2 5555 . . . . . . . . . . . . 13 (𝑧 = (𝑔𝑥) → (𝐹𝑧) = (𝐹‘(𝑔𝑥)))
98eleq1d 2262 . . . . . . . . . . . 12 (𝑧 = (𝑔𝑥) → ((𝐹𝑧) ∈ V ↔ (𝐹‘(𝑔𝑥)) ∈ V))
107, 9spcv 2855 . . . . . . . . . . 11 (∀𝑧(𝐹𝑧) ∈ V → (𝐹‘(𝑔𝑥)) ∈ V)
1110ralrimivw 2568 . . . . . . . . . 10 (∀𝑧(𝐹𝑧) ∈ V → ∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
12 iunexg 6173 . . . . . . . . . 10 ((dom 𝑔 ∈ V ∧ ∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V) → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
135, 11, 12sylancr 414 . . . . . . . . 9 (∀𝑧(𝐹𝑧) ∈ V → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
14 unexg 4475 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1513, 14sylan2 286 . . . . . . . 8 ((𝐴 ∈ V ∧ ∀𝑧(𝐹𝑧) ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1615ancoms 268 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1716ralrimivw 2568 . . . . . 6 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → ∀𝑔 ∈ V (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
18 dmmptg 5164 . . . . . 6 (∀𝑔 ∈ V (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V → dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = V)
1917, 18syl 14 . . . . 5 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = V)
203, 19eleqtrrid 2283 . . . 4 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → 𝑓 ∈ dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
21 funfvex 5572 . . . 4 ((Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ 𝑓 ∈ dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V)
222, 20, 21sylancr 414 . . 3 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V)
2322, 2jctil 312 . 2 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
241, 23sylan2 286 1 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  cun 3152   ciun 3913  cmpt 4091  dom cdm 4660  Fun wfun 5249  cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263
This theorem is referenced by:  rdgifnon2  6435
  Copyright terms: Public domain W3C validator