ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgtfr GIF version

Theorem rdgtfr 6520
Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 14-May-2020.)
Assertion
Ref Expression
rdgtfr ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
Distinct variable groups:   𝐴,𝑔   𝑥,𝑔,𝑧,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑧,𝑓)   𝐹(𝑓)   𝑉(𝑥,𝑧,𝑓,𝑔)

Proof of Theorem rdgtfr
StepHypRef Expression
1 elex 2811 . 2 (𝐴𝑉𝐴 ∈ V)
2 funmpt 5356 . . . 4 Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
3 vex 2802 . . . . 5 𝑓 ∈ V
4 vex 2802 . . . . . . . . . . 11 𝑔 ∈ V
54dmex 4991 . . . . . . . . . 10 dom 𝑔 ∈ V
6 vex 2802 . . . . . . . . . . . . 13 𝑥 ∈ V
74, 6fvex 5647 . . . . . . . . . . . 12 (𝑔𝑥) ∈ V
8 fveq2 5627 . . . . . . . . . . . . 13 (𝑧 = (𝑔𝑥) → (𝐹𝑧) = (𝐹‘(𝑔𝑥)))
98eleq1d 2298 . . . . . . . . . . . 12 (𝑧 = (𝑔𝑥) → ((𝐹𝑧) ∈ V ↔ (𝐹‘(𝑔𝑥)) ∈ V))
107, 9spcv 2897 . . . . . . . . . . 11 (∀𝑧(𝐹𝑧) ∈ V → (𝐹‘(𝑔𝑥)) ∈ V)
1110ralrimivw 2604 . . . . . . . . . 10 (∀𝑧(𝐹𝑧) ∈ V → ∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
12 iunexg 6264 . . . . . . . . . 10 ((dom 𝑔 ∈ V ∧ ∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V) → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
135, 11, 12sylancr 414 . . . . . . . . 9 (∀𝑧(𝐹𝑧) ∈ V → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
14 unexg 4534 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1513, 14sylan2 286 . . . . . . . 8 ((𝐴 ∈ V ∧ ∀𝑧(𝐹𝑧) ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1615ancoms 268 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1716ralrimivw 2604 . . . . . 6 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → ∀𝑔 ∈ V (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
18 dmmptg 5226 . . . . . 6 (∀𝑔 ∈ V (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V → dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = V)
1917, 18syl 14 . . . . 5 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = V)
203, 19eleqtrrid 2319 . . . 4 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → 𝑓 ∈ dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
21 funfvex 5644 . . . 4 ((Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ 𝑓 ∈ dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V)
222, 20, 21sylancr 414 . . 3 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V)
2322, 2jctil 312 . 2 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
241, 23sylan2 286 1 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1393   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  cun 3195   ciun 3965  cmpt 4145  dom cdm 4719  Fun wfun 5312  cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326
This theorem is referenced by:  rdgifnon2  6526
  Copyright terms: Public domain W3C validator