| Step | Hyp | Ref
| Expression |
| 1 | | lttri3 8123 |
. . . . . 6
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
| 2 | 1 | adantl 277 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
| 3 | | suprzclex.ex |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 4 | 2, 3 | supclti 7073 |
. . . 4
⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈
ℝ) |
| 5 | 4 | ltm1d 8976 |
. . 3
⊢ (𝜑 → (sup(𝐴, ℝ, < ) − 1) < sup(𝐴, ℝ, <
)) |
| 6 | | suprzclex.ss |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ℤ) |
| 7 | | zssre 9350 |
. . . . 5
⊢ ℤ
⊆ ℝ |
| 8 | 6, 7 | sstrdi 3196 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 9 | | peano2rem 8310 |
. . . . 5
⊢
(sup(𝐴, ℝ,
< ) ∈ ℝ → (sup(𝐴, ℝ, < ) − 1) ∈
ℝ) |
| 10 | 4, 9 | syl 14 |
. . . 4
⊢ (𝜑 → (sup(𝐴, ℝ, < ) − 1) ∈
ℝ) |
| 11 | 3, 8, 10 | suprlubex 8996 |
. . 3
⊢ (𝜑 → ((sup(𝐴, ℝ, < ) − 1) < sup(𝐴, ℝ, < ) ↔
∃𝑧 ∈ 𝐴 (sup(𝐴, ℝ, < ) − 1) < 𝑧)) |
| 12 | 5, 11 | mpbid 147 |
. 2
⊢ (𝜑 → ∃𝑧 ∈ 𝐴 (sup(𝐴, ℝ, < ) − 1) < 𝑧) |
| 13 | 6 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝐴 ⊆ ℤ) |
| 14 | 13 | sselda 3184 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℤ) |
| 15 | 7, 14 | sselid 3182 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℝ) |
| 16 | 4 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ∈
ℝ) |
| 17 | 16 | adantr 276 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → sup(𝐴, ℝ, < ) ∈
ℝ) |
| 18 | | simprl 529 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ∈ 𝐴) |
| 19 | 13, 18 | sseldd 3185 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ∈ ℤ) |
| 20 | | zre 9347 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℝ) |
| 21 | 19, 20 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ∈ ℝ) |
| 22 | | peano2re 8179 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℝ → (𝑧 + 1) ∈
ℝ) |
| 23 | 21, 22 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (𝑧 + 1) ∈ ℝ) |
| 24 | 23 | adantr 276 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → (𝑧 + 1) ∈ ℝ) |
| 25 | 3 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 26 | 8 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
| 27 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ 𝐴) |
| 28 | 25, 26, 27 | suprubex 8995 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → 𝑤 ≤ sup(𝐴, ℝ, < )) |
| 29 | | simprr 531 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) − 1) < 𝑧) |
| 30 | | 1red 8058 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 1 ∈
ℝ) |
| 31 | 16, 30, 21 | ltsubaddd 8585 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → ((sup(𝐴, ℝ, < ) − 1)
< 𝑧 ↔ sup(𝐴, ℝ, < ) < (𝑧 + 1))) |
| 32 | 29, 31 | mpbid 147 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) < (𝑧 + 1)) |
| 33 | 32 | adantr 276 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → sup(𝐴, ℝ, < ) < (𝑧 + 1)) |
| 34 | 15, 17, 24, 28, 33 | lelttrd 8168 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → 𝑤 < (𝑧 + 1)) |
| 35 | 19 | adantr 276 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → 𝑧 ∈ ℤ) |
| 36 | | zleltp1 9398 |
. . . . . . . 8
⊢ ((𝑤 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑤 ≤ 𝑧 ↔ 𝑤 < (𝑧 + 1))) |
| 37 | 14, 35, 36 | syl2anc 411 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → (𝑤 ≤ 𝑧 ↔ 𝑤 < (𝑧 + 1))) |
| 38 | 34, 37 | mpbird 167 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → 𝑤 ≤ 𝑧) |
| 39 | 38 | ralrimiva 2570 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → ∀𝑤 ∈ 𝐴 𝑤 ≤ 𝑧) |
| 40 | | breq2 4038 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (𝑦 < 𝑧 ↔ 𝑦 < 𝑤)) |
| 41 | 40 | cbvrexv 2730 |
. . . . . . . . . . . 12
⊢
(∃𝑧 ∈
𝐴 𝑦 < 𝑧 ↔ ∃𝑤 ∈ 𝐴 𝑦 < 𝑤) |
| 42 | 41 | imbi2i 226 |
. . . . . . . . . . 11
⊢ ((𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐴 𝑦 < 𝑤)) |
| 43 | 42 | ralbii 2503 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐴 𝑦 < 𝑤)) |
| 44 | 43 | anbi2i 457 |
. . . . . . . . 9
⊢
((∀𝑦 ∈
𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐴 𝑦 < 𝑤))) |
| 45 | 44 | rexbii 2504 |
. . . . . . . 8
⊢
(∃𝑥 ∈
ℝ (∀𝑦 ∈
𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐴 𝑦 < 𝑤))) |
| 46 | 3, 45 | sylib 122 |
. . . . . . 7
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐴 𝑦 < 𝑤))) |
| 47 | 46 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐴 𝑦 < 𝑤))) |
| 48 | 13, 7 | sstrdi 3196 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝐴 ⊆ ℝ) |
| 49 | 47, 48, 21 | suprleubex 8998 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) ≤ 𝑧 ↔ ∀𝑤 ∈ 𝐴 𝑤 ≤ 𝑧)) |
| 50 | 39, 49 | mpbird 167 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ≤ 𝑧) |
| 51 | 47, 48, 18 | suprubex 8995 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ≤ sup(𝐴, ℝ, < )) |
| 52 | 16, 21 | letri3d 8159 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) = 𝑧 ↔ (sup(𝐴, ℝ, < ) ≤ 𝑧 ∧ 𝑧 ≤ sup(𝐴, ℝ, < )))) |
| 53 | 50, 51, 52 | mpbir2and 946 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑧) |
| 54 | 53, 18 | eqeltrd 2273 |
. 2
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
| 55 | 12, 54 | rexlimddv 2619 |
1
⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴) |