| Step | Hyp | Ref
 | Expression | 
| 1 |   | lttri3 8106 | 
. . . . . 6
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | 
| 2 | 1 | adantl 277 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | 
| 3 |   | suprzclex.ex | 
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | 
| 4 | 2, 3 | supclti 7064 | 
. . . 4
⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈
ℝ) | 
| 5 | 4 | ltm1d 8959 | 
. . 3
⊢ (𝜑 → (sup(𝐴, ℝ, < ) − 1) < sup(𝐴, ℝ, <
)) | 
| 6 |   | suprzclex.ss | 
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ℤ) | 
| 7 |   | zssre 9333 | 
. . . . 5
⊢ ℤ
⊆ ℝ | 
| 8 | 6, 7 | sstrdi 3195 | 
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ℝ) | 
| 9 |   | peano2rem 8293 | 
. . . . 5
⊢
(sup(𝐴, ℝ,
< ) ∈ ℝ → (sup(𝐴, ℝ, < ) − 1) ∈
ℝ) | 
| 10 | 4, 9 | syl 14 | 
. . . 4
⊢ (𝜑 → (sup(𝐴, ℝ, < ) − 1) ∈
ℝ) | 
| 11 | 3, 8, 10 | suprlubex 8979 | 
. . 3
⊢ (𝜑 → ((sup(𝐴, ℝ, < ) − 1) < sup(𝐴, ℝ, < ) ↔
∃𝑧 ∈ 𝐴 (sup(𝐴, ℝ, < ) − 1) < 𝑧)) | 
| 12 | 5, 11 | mpbid 147 | 
. 2
⊢ (𝜑 → ∃𝑧 ∈ 𝐴 (sup(𝐴, ℝ, < ) − 1) < 𝑧) | 
| 13 | 6 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝐴 ⊆ ℤ) | 
| 14 | 13 | sselda 3183 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℤ) | 
| 15 | 7, 14 | sselid 3181 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℝ) | 
| 16 | 4 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ∈
ℝ) | 
| 17 | 16 | adantr 276 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → sup(𝐴, ℝ, < ) ∈
ℝ) | 
| 18 |   | simprl 529 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ∈ 𝐴) | 
| 19 | 13, 18 | sseldd 3184 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ∈ ℤ) | 
| 20 |   | zre 9330 | 
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℝ) | 
| 21 | 19, 20 | syl 14 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ∈ ℝ) | 
| 22 |   | peano2re 8162 | 
. . . . . . . . . 10
⊢ (𝑧 ∈ ℝ → (𝑧 + 1) ∈
ℝ) | 
| 23 | 21, 22 | syl 14 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (𝑧 + 1) ∈ ℝ) | 
| 24 | 23 | adantr 276 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → (𝑧 + 1) ∈ ℝ) | 
| 25 | 3 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | 
| 26 | 8 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → 𝐴 ⊆ ℝ) | 
| 27 |   | simpr 110 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ 𝐴) | 
| 28 | 25, 26, 27 | suprubex 8978 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → 𝑤 ≤ sup(𝐴, ℝ, < )) | 
| 29 |   | simprr 531 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) − 1) < 𝑧) | 
| 30 |   | 1red 8041 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 1 ∈
ℝ) | 
| 31 | 16, 30, 21 | ltsubaddd 8568 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → ((sup(𝐴, ℝ, < ) − 1)
< 𝑧 ↔ sup(𝐴, ℝ, < ) < (𝑧 + 1))) | 
| 32 | 29, 31 | mpbid 147 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) < (𝑧 + 1)) | 
| 33 | 32 | adantr 276 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → sup(𝐴, ℝ, < ) < (𝑧 + 1)) | 
| 34 | 15, 17, 24, 28, 33 | lelttrd 8151 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → 𝑤 < (𝑧 + 1)) | 
| 35 | 19 | adantr 276 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → 𝑧 ∈ ℤ) | 
| 36 |   | zleltp1 9381 | 
. . . . . . . 8
⊢ ((𝑤 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑤 ≤ 𝑧 ↔ 𝑤 < (𝑧 + 1))) | 
| 37 | 14, 35, 36 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → (𝑤 ≤ 𝑧 ↔ 𝑤 < (𝑧 + 1))) | 
| 38 | 34, 37 | mpbird 167 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤 ∈ 𝐴) → 𝑤 ≤ 𝑧) | 
| 39 | 38 | ralrimiva 2570 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → ∀𝑤 ∈ 𝐴 𝑤 ≤ 𝑧) | 
| 40 |   | breq2 4037 | 
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (𝑦 < 𝑧 ↔ 𝑦 < 𝑤)) | 
| 41 | 40 | cbvrexv 2730 | 
. . . . . . . . . . . 12
⊢
(∃𝑧 ∈
𝐴 𝑦 < 𝑧 ↔ ∃𝑤 ∈ 𝐴 𝑦 < 𝑤) | 
| 42 | 41 | imbi2i 226 | 
. . . . . . . . . . 11
⊢ ((𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐴 𝑦 < 𝑤)) | 
| 43 | 42 | ralbii 2503 | 
. . . . . . . . . 10
⊢
(∀𝑦 ∈
ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐴 𝑦 < 𝑤)) | 
| 44 | 43 | anbi2i 457 | 
. . . . . . . . 9
⊢
((∀𝑦 ∈
𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐴 𝑦 < 𝑤))) | 
| 45 | 44 | rexbii 2504 | 
. . . . . . . 8
⊢
(∃𝑥 ∈
ℝ (∀𝑦 ∈
𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐴 𝑦 < 𝑤))) | 
| 46 | 3, 45 | sylib 122 | 
. . . . . . 7
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐴 𝑦 < 𝑤))) | 
| 47 | 46 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐴 𝑦 < 𝑤))) | 
| 48 | 13, 7 | sstrdi 3195 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝐴 ⊆ ℝ) | 
| 49 | 47, 48, 21 | suprleubex 8981 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) ≤ 𝑧 ↔ ∀𝑤 ∈ 𝐴 𝑤 ≤ 𝑧)) | 
| 50 | 39, 49 | mpbird 167 | 
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ≤ 𝑧) | 
| 51 | 47, 48, 18 | suprubex 8978 | 
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ≤ sup(𝐴, ℝ, < )) | 
| 52 | 16, 21 | letri3d 8142 | 
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) = 𝑧 ↔ (sup(𝐴, ℝ, < ) ≤ 𝑧 ∧ 𝑧 ≤ sup(𝐴, ℝ, < )))) | 
| 53 | 50, 51, 52 | mpbir2and 946 | 
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑧) | 
| 54 | 53, 18 | eqeltrd 2273 | 
. 2
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴) | 
| 55 | 12, 54 | rexlimddv 2619 | 
1
⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴) |