ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprzclex GIF version

Theorem suprzclex 9351
Description: The supremum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 20-Dec-2021.)
Hypotheses
Ref Expression
suprzclex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
suprzclex.ss (𝜑𝐴 ⊆ ℤ)
Assertion
Ref Expression
suprzclex (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥,𝑧
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem suprzclex
Dummy variables 𝑤 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 8037 . . . . . 6 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 277 . . . . 5 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 suprzclex.ex . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
42, 3supclti 6997 . . . 4 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
54ltm1d 8889 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) − 1) < sup(𝐴, ℝ, < ))
6 suprzclex.ss . . . . 5 (𝜑𝐴 ⊆ ℤ)
7 zssre 9260 . . . . 5 ℤ ⊆ ℝ
86, 7sstrdi 3168 . . . 4 (𝜑𝐴 ⊆ ℝ)
9 peano2rem 8224 . . . . 5 (sup(𝐴, ℝ, < ) ∈ ℝ → (sup(𝐴, ℝ, < ) − 1) ∈ ℝ)
104, 9syl 14 . . . 4 (𝜑 → (sup(𝐴, ℝ, < ) − 1) ∈ ℝ)
113, 8, 10suprlubex 8909 . . 3 (𝜑 → ((sup(𝐴, ℝ, < ) − 1) < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 (sup(𝐴, ℝ, < ) − 1) < 𝑧))
125, 11mpbid 147 . 2 (𝜑 → ∃𝑧𝐴 (sup(𝐴, ℝ, < ) − 1) < 𝑧)
136adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝐴 ⊆ ℤ)
1413sselda 3156 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤 ∈ ℤ)
157, 14sselid 3154 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤 ∈ ℝ)
164adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ∈ ℝ)
1716adantr 276 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ)
18 simprl 529 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧𝐴)
1913, 18sseldd 3157 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ∈ ℤ)
20 zre 9257 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
2119, 20syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ∈ ℝ)
22 peano2re 8093 . . . . . . . . . 10 (𝑧 ∈ ℝ → (𝑧 + 1) ∈ ℝ)
2321, 22syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (𝑧 + 1) ∈ ℝ)
2423adantr 276 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → (𝑧 + 1) ∈ ℝ)
253ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
268ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝐴 ⊆ ℝ)
27 simpr 110 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤𝐴)
2825, 26, 27suprubex 8908 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤 ≤ sup(𝐴, ℝ, < ))
29 simprr 531 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) − 1) < 𝑧)
30 1red 7972 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 1 ∈ ℝ)
3116, 30, 21ltsubaddd 8498 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → ((sup(𝐴, ℝ, < ) − 1) < 𝑧 ↔ sup(𝐴, ℝ, < ) < (𝑧 + 1)))
3229, 31mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) < (𝑧 + 1))
3332adantr 276 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → sup(𝐴, ℝ, < ) < (𝑧 + 1))
3415, 17, 24, 28, 33lelttrd 8082 . . . . . . 7 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤 < (𝑧 + 1))
3519adantr 276 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑧 ∈ ℤ)
36 zleltp1 9308 . . . . . . . 8 ((𝑤 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑤𝑧𝑤 < (𝑧 + 1)))
3714, 35, 36syl2anc 411 . . . . . . 7 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → (𝑤𝑧𝑤 < (𝑧 + 1)))
3834, 37mpbird 167 . . . . . 6 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤𝑧)
3938ralrimiva 2550 . . . . 5 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → ∀𝑤𝐴 𝑤𝑧)
40 breq2 4008 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (𝑦 < 𝑧𝑦 < 𝑤))
4140cbvrexv 2705 . . . . . . . . . . . 12 (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑤𝐴 𝑦 < 𝑤)
4241imbi2i 226 . . . . . . . . . . 11 ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤))
4342ralbii 2483 . . . . . . . . . 10 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤))
4443anbi2i 457 . . . . . . . . 9 ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤)))
4544rexbii 2484 . . . . . . . 8 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤)))
463, 45sylib 122 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤)))
4746adantr 276 . . . . . 6 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤)))
4813, 7sstrdi 3168 . . . . . 6 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝐴 ⊆ ℝ)
4947, 48, 21suprleubex 8911 . . . . 5 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) ≤ 𝑧 ↔ ∀𝑤𝐴 𝑤𝑧))
5039, 49mpbird 167 . . . 4 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ≤ 𝑧)
5147, 48, 18suprubex 8908 . . . 4 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ≤ sup(𝐴, ℝ, < ))
5216, 21letri3d 8073 . . . 4 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) = 𝑧 ↔ (sup(𝐴, ℝ, < ) ≤ 𝑧𝑧 ≤ sup(𝐴, ℝ, < ))))
5350, 51, 52mpbir2and 944 . . 3 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑧)
5453, 18eqeltrd 2254 . 2 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴)
5512, 54rexlimddv 2599 1 (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  wrex 2456  wss 3130   class class class wbr 4004  (class class class)co 5875  supcsup 6981  cr 7810  1c1 7812   + caddc 7814   < clt 7992  cle 7993  cmin 8128  cz 9253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-id 4294  df-po 4297  df-iso 4298  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-sup 6983  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254
This theorem is referenced by:  infssuzcldc  11952  gcddvds  11964
  Copyright terms: Public domain W3C validator