ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprzclex GIF version

Theorem suprzclex 9280
Description: The supremum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 20-Dec-2021.)
Hypotheses
Ref Expression
suprzclex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
suprzclex.ss (𝜑𝐴 ⊆ ℤ)
Assertion
Ref Expression
suprzclex (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥,𝑧
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem suprzclex
Dummy variables 𝑤 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 7969 . . . . . 6 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 275 . . . . 5 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 suprzclex.ex . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
42, 3supclti 6954 . . . 4 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
54ltm1d 8818 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) − 1) < sup(𝐴, ℝ, < ))
6 suprzclex.ss . . . . 5 (𝜑𝐴 ⊆ ℤ)
7 zssre 9189 . . . . 5 ℤ ⊆ ℝ
86, 7sstrdi 3149 . . . 4 (𝜑𝐴 ⊆ ℝ)
9 peano2rem 8156 . . . . 5 (sup(𝐴, ℝ, < ) ∈ ℝ → (sup(𝐴, ℝ, < ) − 1) ∈ ℝ)
104, 9syl 14 . . . 4 (𝜑 → (sup(𝐴, ℝ, < ) − 1) ∈ ℝ)
113, 8, 10suprlubex 8838 . . 3 (𝜑 → ((sup(𝐴, ℝ, < ) − 1) < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 (sup(𝐴, ℝ, < ) − 1) < 𝑧))
125, 11mpbid 146 . 2 (𝜑 → ∃𝑧𝐴 (sup(𝐴, ℝ, < ) − 1) < 𝑧)
136adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝐴 ⊆ ℤ)
1413sselda 3137 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤 ∈ ℤ)
157, 14sseldi 3135 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤 ∈ ℝ)
164adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ∈ ℝ)
1716adantr 274 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ)
18 simprl 521 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧𝐴)
1913, 18sseldd 3138 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ∈ ℤ)
20 zre 9186 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
2119, 20syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ∈ ℝ)
22 peano2re 8025 . . . . . . . . . 10 (𝑧 ∈ ℝ → (𝑧 + 1) ∈ ℝ)
2321, 22syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (𝑧 + 1) ∈ ℝ)
2423adantr 274 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → (𝑧 + 1) ∈ ℝ)
253ad2antrr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
268ad2antrr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝐴 ⊆ ℝ)
27 simpr 109 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤𝐴)
2825, 26, 27suprubex 8837 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤 ≤ sup(𝐴, ℝ, < ))
29 simprr 522 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) − 1) < 𝑧)
30 1red 7905 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 1 ∈ ℝ)
3116, 30, 21ltsubaddd 8430 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → ((sup(𝐴, ℝ, < ) − 1) < 𝑧 ↔ sup(𝐴, ℝ, < ) < (𝑧 + 1)))
3229, 31mpbid 146 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) < (𝑧 + 1))
3332adantr 274 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → sup(𝐴, ℝ, < ) < (𝑧 + 1))
3415, 17, 24, 28, 33lelttrd 8014 . . . . . . 7 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤 < (𝑧 + 1))
3519adantr 274 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑧 ∈ ℤ)
36 zleltp1 9237 . . . . . . . 8 ((𝑤 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑤𝑧𝑤 < (𝑧 + 1)))
3714, 35, 36syl2anc 409 . . . . . . 7 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → (𝑤𝑧𝑤 < (𝑧 + 1)))
3834, 37mpbird 166 . . . . . 6 (((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) ∧ 𝑤𝐴) → 𝑤𝑧)
3938ralrimiva 2537 . . . . 5 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → ∀𝑤𝐴 𝑤𝑧)
40 breq2 3980 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (𝑦 < 𝑧𝑦 < 𝑤))
4140cbvrexv 2690 . . . . . . . . . . . 12 (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑤𝐴 𝑦 < 𝑤)
4241imbi2i 225 . . . . . . . . . . 11 ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤))
4342ralbii 2470 . . . . . . . . . 10 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤))
4443anbi2i 453 . . . . . . . . 9 ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤)))
4544rexbii 2471 . . . . . . . 8 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤)))
463, 45sylib 121 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤)))
4746adantr 274 . . . . . 6 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑤𝐴 𝑦 < 𝑤)))
4813, 7sstrdi 3149 . . . . . 6 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝐴 ⊆ ℝ)
4947, 48, 21suprleubex 8840 . . . . 5 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) ≤ 𝑧 ↔ ∀𝑤𝐴 𝑤𝑧))
5039, 49mpbird 166 . . . 4 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ≤ 𝑧)
5147, 48, 18suprubex 8837 . . . 4 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → 𝑧 ≤ sup(𝐴, ℝ, < ))
5216, 21letri3d 8005 . . . 4 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → (sup(𝐴, ℝ, < ) = 𝑧 ↔ (sup(𝐴, ℝ, < ) ≤ 𝑧𝑧 ≤ sup(𝐴, ℝ, < ))))
5350, 51, 52mpbir2and 933 . . 3 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑧)
5453, 18eqeltrd 2241 . 2 ((𝜑 ∧ (𝑧𝐴 ∧ (sup(𝐴, ℝ, < ) − 1) < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴)
5512, 54rexlimddv 2586 1 (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1342  wcel 2135  wral 2442  wrex 2443  wss 3111   class class class wbr 3976  (class class class)co 5836  supcsup 6938  cr 7743  1c1 7745   + caddc 7747   < clt 7924  cle 7925  cmin 8060  cz 9182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-id 4265  df-po 4268  df-iso 4269  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-sup 6940  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183
This theorem is referenced by:  infssuzcldc  11869  gcddvds  11881
  Copyright terms: Public domain W3C validator