MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppi1 Structured version   Visualization version   GIF version

Theorem ppi1 27081
Description: The prime-counting function π at 1. (Contributed by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
ppi1 (π‘1) = 0

Proof of Theorem ppi1
StepHypRef Expression
1 1z 12570 . . 3 1 ∈ ℤ
2 ppival2 27045 . . 3 (1 ∈ ℤ → (π‘1) = (♯‘((2...1) ∩ ℙ)))
31, 2ax-mp 5 . 2 (π‘1) = (♯‘((2...1) ∩ ℙ))
4 1lt2 12359 . . . . . . 7 1 < 2
5 2z 12572 . . . . . . . 8 2 ∈ ℤ
6 fzn 13508 . . . . . . . 8 ((2 ∈ ℤ ∧ 1 ∈ ℤ) → (1 < 2 ↔ (2...1) = ∅))
75, 1, 6mp2an 692 . . . . . . 7 (1 < 2 ↔ (2...1) = ∅)
84, 7mpbi 230 . . . . . 6 (2...1) = ∅
98ineq1i 4182 . . . . 5 ((2...1) ∩ ℙ) = (∅ ∩ ℙ)
10 0in 4363 . . . . 5 (∅ ∩ ℙ) = ∅
119, 10eqtri 2753 . . . 4 ((2...1) ∩ ℙ) = ∅
1211fveq2i 6864 . . 3 (♯‘((2...1) ∩ ℙ)) = (♯‘∅)
13 hash0 14339 . . 3 (♯‘∅) = 0
1412, 13eqtri 2753 . 2 (♯‘((2...1) ∩ ℙ)) = 0
153, 14eqtri 2753 1 (π‘1) = 0
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  cin 3916  c0 4299   class class class wbr 5110  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   < clt 11215  2c2 12248  cz 12536  ...cfz 13475  chash 14302  cprime 16648  πcppi 27011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-icc 13320  df-fz 13476  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-prm 16649  df-ppi 27017
This theorem is referenced by:  ppi2  27087  ppieq0  27093  bposlem5  27206
  Copyright terms: Public domain W3C validator