Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cndprobnul Structured version   Visualization version   GIF version

Theorem cndprobnul 31780
 Description: The conditional probability given empty event is zero. (Contributed by Thierry Arnoux, 20-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.)
Assertion
Ref Expression
cndprobnul ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → ((cprob‘𝑃)‘⟨∅, 𝐴⟩) = 0)

Proof of Theorem cndprobnul
StepHypRef Expression
1 simp1 1133 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → 𝑃 ∈ Prob)
2 nuleldmp 31760 . . . 4 (𝑃 ∈ Prob → ∅ ∈ dom 𝑃)
31, 2syl 17 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → ∅ ∈ dom 𝑃)
4 simp2 1134 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → 𝐴 ∈ dom 𝑃)
5 cndprobval 31776 . . 3 ((𝑃 ∈ Prob ∧ ∅ ∈ dom 𝑃𝐴 ∈ dom 𝑃) → ((cprob‘𝑃)‘⟨∅, 𝐴⟩) = ((𝑃‘(∅ ∩ 𝐴)) / (𝑃𝐴)))
61, 3, 4, 5syl3anc 1368 . 2 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → ((cprob‘𝑃)‘⟨∅, 𝐴⟩) = ((𝑃‘(∅ ∩ 𝐴)) / (𝑃𝐴)))
7 0in 4330 . . . . . 6 (∅ ∩ 𝐴) = ∅
87fveq2i 6666 . . . . 5 (𝑃‘(∅ ∩ 𝐴)) = (𝑃‘∅)
98oveq1i 7161 . . . 4 ((𝑃‘(∅ ∩ 𝐴)) / (𝑃𝐴)) = ((𝑃‘∅) / (𝑃𝐴))
109a1i 11 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → ((𝑃‘(∅ ∩ 𝐴)) / (𝑃𝐴)) = ((𝑃‘∅) / (𝑃𝐴)))
11 probnul 31757 . . . . 5 (𝑃 ∈ Prob → (𝑃‘∅) = 0)
121, 11syl 17 . . . 4 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → (𝑃‘∅) = 0)
1312oveq1d 7166 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → ((𝑃‘∅) / (𝑃𝐴)) = (0 / (𝑃𝐴)))
14 prob01 31756 . . . . . 6 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃𝐴) ∈ (0[,]1))
15143adant3 1129 . . . . 5 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → (𝑃𝐴) ∈ (0[,]1))
16 elunitcn 12857 . . . . 5 ((𝑃𝐴) ∈ (0[,]1) → (𝑃𝐴) ∈ ℂ)
1715, 16syl 17 . . . 4 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → (𝑃𝐴) ∈ ℂ)
18 simp3 1135 . . . 4 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → (𝑃𝐴) ≠ 0)
1917, 18div0d 11415 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → (0 / (𝑃𝐴)) = 0)
2010, 13, 193eqtrd 2863 . 2 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → ((𝑃‘(∅ ∩ 𝐴)) / (𝑃𝐴)) = 0)
216, 20eqtrd 2859 1 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → ((cprob‘𝑃)‘⟨∅, 𝐴⟩) = 0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3014   ∩ cin 3918  ∅c0 4276  ⟨cop 4556  dom cdm 5543  ‘cfv 6345  (class class class)co 7151  ℂcc 10535  0cc0 10537  1c1 10538   / cdiv 11297  [,]cicc 12740  Probcprb 31750  cprobccprob 31774 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-inf2 9103  ax-ac2 9885  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-isom 6354  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7405  df-om 7577  df-1st 7686  df-2nd 7687  df-supp 7829  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-2o 8101  df-oadd 8104  df-er 8287  df-map 8406  df-pm 8407  df-ixp 8460  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-dju 9329  df-card 9367  df-acn 9370  df-ac 9542  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11637  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12897  df-fzo 13040  df-fl 13168  df-mod 13244  df-seq 13376  df-exp 13437  df-fac 13641  df-bc 13670  df-hash 13698  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-ordt 16776  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-ps 17812  df-tsr 17813  df-plusf 17853  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-subrg 19535  df-abv 19590  df-lmod 19638  df-scaf 19639  df-sra 19946  df-rgmod 19947  df-psmet 20092  df-xmet 20093  df-met 20094  df-bl 20095  df-mopn 20096  df-fbas 20097  df-fg 20098  df-cnfld 20101  df-top 21508  df-topon 21525  df-topsp 21547  df-bases 21560  df-cld 21633  df-ntr 21634  df-cls 21635  df-nei 21712  df-lp 21750  df-perf 21751  df-cn 21841  df-cnp 21842  df-haus 21929  df-tx 22176  df-hmeo 22369  df-fil 22460  df-fm 22552  df-flim 22553  df-flf 22554  df-tmd 22686  df-tgp 22687  df-tsms 22741  df-trg 22774  df-xms 22936  df-ms 22937  df-tms 22938  df-nm 23198  df-ngp 23199  df-nrg 23201  df-nlm 23202  df-ii 23491  df-cncf 23492  df-limc 24478  df-dv 24479  df-log 25157  df-esum 31372  df-siga 31453  df-meas 31540  df-prob 31751  df-cndprob 31775 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator