MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cht1 Structured version   Visualization version   GIF version

Theorem cht1 25744
Description: The Chebyshev function at 1. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
cht1 (θ‘1) = 0

Proof of Theorem cht1
StepHypRef Expression
1 1re 10643 . . 3 1 ∈ ℝ
2 chtval 25689 . . 3 (1 ∈ ℝ → (θ‘1) = Σ𝑝 ∈ ((0[,]1) ∩ ℙ)(log‘𝑝))
31, 2ax-mp 5 . 2 (θ‘1) = Σ𝑝 ∈ ((0[,]1) ∩ ℙ)(log‘𝑝)
4 ppisval 25683 . . . . 5 (1 ∈ ℝ → ((0[,]1) ∩ ℙ) = ((2...(⌊‘1)) ∩ ℙ))
51, 4ax-mp 5 . . . 4 ((0[,]1) ∩ ℙ) = ((2...(⌊‘1)) ∩ ℙ)
6 1z 12015 . . . . . . . 8 1 ∈ ℤ
7 flid 13181 . . . . . . . 8 (1 ∈ ℤ → (⌊‘1) = 1)
86, 7ax-mp 5 . . . . . . 7 (⌊‘1) = 1
98oveq2i 7169 . . . . . 6 (2...(⌊‘1)) = (2...1)
10 1lt2 11811 . . . . . . 7 1 < 2
11 2z 12017 . . . . . . . 8 2 ∈ ℤ
12 fzn 12926 . . . . . . . 8 ((2 ∈ ℤ ∧ 1 ∈ ℤ) → (1 < 2 ↔ (2...1) = ∅))
1311, 6, 12mp2an 690 . . . . . . 7 (1 < 2 ↔ (2...1) = ∅)
1410, 13mpbi 232 . . . . . 6 (2...1) = ∅
159, 14eqtri 2846 . . . . 5 (2...(⌊‘1)) = ∅
1615ineq1i 4187 . . . 4 ((2...(⌊‘1)) ∩ ℙ) = (∅ ∩ ℙ)
17 0in 4349 . . . 4 (∅ ∩ ℙ) = ∅
185, 16, 173eqtri 2850 . . 3 ((0[,]1) ∩ ℙ) = ∅
1918sumeq1i 15057 . 2 Σ𝑝 ∈ ((0[,]1) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ∅ (log‘𝑝)
20 sum0 15080 . 2 Σ𝑝 ∈ ∅ (log‘𝑝) = 0
213, 19, 203eqtri 2850 1 (θ‘1) = 0
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1537  wcel 2114  cin 3937  c0 4293   class class class wbr 5068  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   < clt 10677  2c2 11695  cz 11984  [,]cicc 12744  ...cfz 12895  cfl 13163  Σcsu 15044  cprime 16017  logclog 25140  θccht 25670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-dvds 15610  df-prm 16018  df-cht 25676
This theorem is referenced by:  cht2  25751
  Copyright terms: Public domain W3C validator