MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marrepfval Structured version   Visualization version   GIF version

Theorem marrepfval 22463
Description: First substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
marrepfval.a 𝐴 = (𝑁 Mat 𝑅)
marrepfval.b 𝐵 = (Base‘𝐴)
marrepfval.q 𝑄 = (𝑁 matRRep 𝑅)
marrepfval.z 0 = (0g𝑅)
Assertion
Ref Expression
marrepfval 𝑄 = (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))
Distinct variable groups:   𝐵,𝑚,𝑠   𝑖,𝑁,𝑗,𝑘,𝑙,𝑚,𝑠   𝑅,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑙)   𝑄(𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   0 (𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem marrepfval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marrepfval.q . 2 𝑄 = (𝑁 matRRep 𝑅)
2 marrepfval.b . . . . . 6 𝐵 = (Base‘𝐴)
32fvexi 6840 . . . . 5 𝐵 ∈ V
4 fvexd 6841 . . . . 5 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
5 mpoexga 8019 . . . . 5 ((𝐵 ∈ V ∧ (Base‘𝑅) ∈ V) → (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) ∈ V)
63, 4, 5sylancr 587 . . . 4 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) ∈ V)
7 oveq12 7362 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
87fveq2d 6830 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅)))
9 marrepfval.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
109fveq2i 6829 . . . . . . . 8 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
112, 10eqtri 2752 . . . . . . 7 𝐵 = (Base‘(𝑁 Mat 𝑅))
128, 11eqtr4di 2782 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
13 fveq2 6826 . . . . . . 7 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
1413adantl 481 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘𝑟) = (Base‘𝑅))
15 simpl 482 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
16 fveq2 6826 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
17 marrepfval.z . . . . . . . . . . . 12 0 = (0g𝑅)
1816, 17eqtr4di 2782 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1918ifeq2d 4499 . . . . . . . . . 10 (𝑟 = 𝑅 → if(𝑗 = 𝑙, 𝑠, (0g𝑟)) = if(𝑗 = 𝑙, 𝑠, 0 ))
2019ifeq1d 4498 . . . . . . . . 9 (𝑟 = 𝑅 → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g𝑟)), (𝑖𝑚𝑗)) = if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))
2120adantl 481 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g𝑟)), (𝑖𝑚𝑗)) = if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))
2215, 15, 21mpoeq123dv 7428 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑖𝑛, 𝑗𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g𝑟)), (𝑖𝑚𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))
2315, 15, 22mpoeq123dv 7428 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑘𝑛, 𝑙𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g𝑟)), (𝑖𝑚𝑗)))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))
2412, 14, 23mpoeq123dv 7428 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑠 ∈ (Base‘𝑟) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g𝑟)), (𝑖𝑚𝑗))))) = (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))))
25 df-marrep 22461 . . . . 5 matRRep = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑠 ∈ (Base‘𝑟) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g𝑟)), (𝑖𝑚𝑗))))))
2624, 25ovmpoga 7507 . . . 4 ((𝑁 ∈ V ∧ 𝑅 ∈ V ∧ (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) ∈ V) → (𝑁 matRRep 𝑅) = (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))))
276, 26mpd3an3 1464 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRRep 𝑅) = (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))))
2825mpondm0 7593 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRRep 𝑅) = ∅)
29 matbas0pc 22312 . . . . . . 7 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅)
3011, 29eqtrid 2776 . . . . . 6 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
3130orcd 873 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝐵 = ∅ ∨ (Base‘𝑅) = ∅))
32 0mpo0 7436 . . . . 5 ((𝐵 = ∅ ∨ (Base‘𝑅) = ∅) → (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) = ∅)
3331, 32syl 17 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) = ∅)
3428, 33eqtr4d 2767 . . 3 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRRep 𝑅) = (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))))
3527, 34pm2.61i 182 . 2 (𝑁 matRRep 𝑅) = (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))
361, 35eqtri 2752 1 𝑄 = (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3438  c0 4286  ifcif 4478  cfv 6486  (class class class)co 7353  cmpo 7355  Basecbs 17138  0gc0g 17361   Mat cmat 22310   matRRep cmarrep 22459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-1cn 11086  ax-addcl 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-nn 12147  df-slot 17111  df-ndx 17123  df-base 17139  df-mat 22311  df-marrep 22461
This theorem is referenced by:  marrepval0  22464
  Copyright terms: Public domain W3C validator