MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marrepfval Structured version   Visualization version   GIF version

Theorem marrepfval 21457
Description: First substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
marrepfval.a 𝐴 = (𝑁 Mat 𝑅)
marrepfval.b 𝐵 = (Base‘𝐴)
marrepfval.q 𝑄 = (𝑁 matRRep 𝑅)
marrepfval.z 0 = (0g𝑅)
Assertion
Ref Expression
marrepfval 𝑄 = (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))
Distinct variable groups:   𝐵,𝑚,𝑠   𝑖,𝑁,𝑗,𝑘,𝑙,𝑚,𝑠   𝑅,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑙)   𝑄(𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   0 (𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem marrepfval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marrepfval.q . 2 𝑄 = (𝑁 matRRep 𝑅)
2 marrepfval.b . . . . . 6 𝐵 = (Base‘𝐴)
32fvexi 6731 . . . . 5 𝐵 ∈ V
4 fvexd 6732 . . . . 5 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
5 mpoexga 7848 . . . . 5 ((𝐵 ∈ V ∧ (Base‘𝑅) ∈ V) → (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) ∈ V)
63, 4, 5sylancr 590 . . . 4 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) ∈ V)
7 oveq12 7222 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
87fveq2d 6721 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅)))
9 marrepfval.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
109fveq2i 6720 . . . . . . . 8 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
112, 10eqtri 2765 . . . . . . 7 𝐵 = (Base‘(𝑁 Mat 𝑅))
128, 11eqtr4di 2796 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
13 fveq2 6717 . . . . . . 7 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
1413adantl 485 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘𝑟) = (Base‘𝑅))
15 simpl 486 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
16 fveq2 6717 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
17 marrepfval.z . . . . . . . . . . . 12 0 = (0g𝑅)
1816, 17eqtr4di 2796 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1918ifeq2d 4459 . . . . . . . . . 10 (𝑟 = 𝑅 → if(𝑗 = 𝑙, 𝑠, (0g𝑟)) = if(𝑗 = 𝑙, 𝑠, 0 ))
2019ifeq1d 4458 . . . . . . . . 9 (𝑟 = 𝑅 → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g𝑟)), (𝑖𝑚𝑗)) = if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))
2120adantl 485 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g𝑟)), (𝑖𝑚𝑗)) = if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))
2215, 15, 21mpoeq123dv 7286 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑖𝑛, 𝑗𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g𝑟)), (𝑖𝑚𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))
2315, 15, 22mpoeq123dv 7286 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑘𝑛, 𝑙𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g𝑟)), (𝑖𝑚𝑗)))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))
2412, 14, 23mpoeq123dv 7286 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑠 ∈ (Base‘𝑟) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g𝑟)), (𝑖𝑚𝑗))))) = (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))))
25 df-marrep 21455 . . . . 5 matRRep = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑠 ∈ (Base‘𝑟) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g𝑟)), (𝑖𝑚𝑗))))))
2624, 25ovmpoga 7363 . . . 4 ((𝑁 ∈ V ∧ 𝑅 ∈ V ∧ (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) ∈ V) → (𝑁 matRRep 𝑅) = (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))))
276, 26mpd3an3 1464 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRRep 𝑅) = (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))))
2825mpondm0 7446 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRRep 𝑅) = ∅)
29 matbas0pc 21306 . . . . . . 7 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅)
3011, 29syl5eq 2790 . . . . . 6 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
3130orcd 873 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝐵 = ∅ ∨ (Base‘𝑅) = ∅))
32 0mpo0 7294 . . . . 5 ((𝐵 = ∅ ∨ (Base‘𝑅) = ∅) → (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) = ∅)
3331, 32syl 17 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))) = ∅)
3428, 33eqtr4d 2780 . . 3 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRRep 𝑅) = (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))))))
3527, 34pm2.61i 185 . 2 (𝑁 matRRep 𝑅) = (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))
361, 35eqtri 2765 1 𝑄 = (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399  wo 847   = wceq 1543  wcel 2110  Vcvv 3408  c0 4237  ifcif 4439  cfv 6380  (class class class)co 7213  cmpo 7215  Basecbs 16760  0gc0g 16944   Mat cmat 21304   matRRep cmarrep 21453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-1cn 10787  ax-addcl 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-nn 11831  df-slot 16735  df-ndx 16745  df-base 16761  df-mat 21305  df-marrep 21455
This theorem is referenced by:  marrepval0  21458
  Copyright terms: Public domain W3C validator