Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendmulrfval Structured version   Visualization version   GIF version

Theorem mendmulrfval 43300
Description: Multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
mendmulrfval.a 𝐴 = (MEndo‘𝑀)
mendmulrfval.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
mendmulrfval (.r𝐴) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑀,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem mendmulrfval
StepHypRef Expression
1 mendmulrfval.a . . . . 5 𝐴 = (MEndo‘𝑀)
2 mendmulrfval.b . . . . . . 7 𝐵 = (Base‘𝐴)
31mendbas 43297 . . . . . . 7 (𝑀 LMHom 𝑀) = (Base‘𝐴)
42, 3eqtr4i 2759 . . . . . 6 𝐵 = (𝑀 LMHom 𝑀)
5 eqid 2733 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))
6 eqid 2733 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
7 eqid 2733 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
8 eqid 2733 . . . . . 6 (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦)) = (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
94, 5, 6, 7, 8mendval 43296 . . . . 5 (𝑀 ∈ V → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩}))
101, 9eqtrid 2780 . . . 4 (𝑀 ∈ V → 𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩}))
1110fveq2d 6832 . . 3 (𝑀 ∈ V → (.r𝐴) = (.r‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩})))
122fvexi 6842 . . . . 5 𝐵 ∈ V
1312, 12mpoex 8017 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) ∈ V
14 eqid 2733 . . . . 5 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩})
1514algmulr 43293 . . . 4 ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = (.r‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩})))
1613, 15mp1i 13 . . 3 (𝑀 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = (.r‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩})))
1711, 16eqtr4d 2771 . 2 (𝑀 ∈ V → (.r𝐴) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)))
18 fvprc 6820 . . . . . 6 𝑀 ∈ V → (MEndo‘𝑀) = ∅)
191, 18eqtrid 2780 . . . . 5 𝑀 ∈ V → 𝐴 = ∅)
2019fveq2d 6832 . . . 4 𝑀 ∈ V → (.r𝐴) = (.r‘∅))
21 mulridx 17201 . . . . 5 .r = Slot (.r‘ndx)
2221str0 17102 . . . 4 ∅ = (.r‘∅)
2320, 22eqtr4di 2786 . . 3 𝑀 ∈ V → (.r𝐴) = ∅)
2419fveq2d 6832 . . . . . . 7 𝑀 ∈ V → (Base‘𝐴) = (Base‘∅))
252, 24eqtrid 2780 . . . . . 6 𝑀 ∈ V → 𝐵 = (Base‘∅))
26 base0 17127 . . . . . 6 ∅ = (Base‘∅)
2725, 26eqtr4di 2786 . . . . 5 𝑀 ∈ V → 𝐵 = ∅)
2827olcd 874 . . . 4 𝑀 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅))
29 0mpo0 7435 . . . 4 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = ∅)
3028, 29syl 17 . . 3 𝑀 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = ∅)
3123, 30eqtr4d 2771 . 2 𝑀 ∈ V → (.r𝐴) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)))
3217, 31pm2.61i 182 1 (.r𝐴) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1541  wcel 2113  Vcvv 3437  cun 3896  c0 4282  {csn 4575  {cpr 4577  {ctp 4579  cop 4581   × cxp 5617  ccom 5623  cfv 6486  (class class class)co 7352  cmpo 7354  f cof 7614  ndxcnx 17106  Basecbs 17122  +gcplusg 17163  .rcmulr 17164  Scalarcsca 17166   ·𝑠 cvsca 17167   LMHom clmhm 20955  MEndocmend 43288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-lmhm 20958  df-mend 43289
This theorem is referenced by:  mendmulr  43301
  Copyright terms: Public domain W3C validator