Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendmulrfval Structured version   Visualization version   GIF version

Theorem mendmulrfval 42672
Description: Multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
mendmulrfval.a 𝐴 = (MEndoβ€˜π‘€)
mendmulrfval.b 𝐡 = (Baseβ€˜π΄)
Assertion
Ref Expression
mendmulrfval (.rβ€˜π΄) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))
Distinct variable groups:   π‘₯,𝑦,𝐡   π‘₯,𝑀,𝑦
Allowed substitution hints:   𝐴(π‘₯,𝑦)

Proof of Theorem mendmulrfval
StepHypRef Expression
1 mendmulrfval.a . . . . 5 𝐴 = (MEndoβ€˜π‘€)
2 mendmulrfval.b . . . . . . 7 𝐡 = (Baseβ€˜π΄)
31mendbas 42669 . . . . . . 7 (𝑀 LMHom 𝑀) = (Baseβ€˜π΄)
42, 3eqtr4i 2756 . . . . . 6 𝐡 = (𝑀 LMHom 𝑀)
5 eqid 2725 . . . . . 6 (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦)) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))
6 eqid 2725 . . . . . 6 (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))
7 eqid 2725 . . . . . 6 (Scalarβ€˜π‘€) = (Scalarβ€˜π‘€)
8 eqid 2725 . . . . . 6 (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦)) = (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))
94, 5, 6, 7, 8mendval 42668 . . . . 5 (𝑀 ∈ V β†’ (MEndoβ€˜π‘€) = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩}))
101, 9eqtrid 2777 . . . 4 (𝑀 ∈ V β†’ 𝐴 = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩}))
1110fveq2d 6894 . . 3 (𝑀 ∈ V β†’ (.rβ€˜π΄) = (.rβ€˜({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩})))
122fvexi 6904 . . . . 5 𝐡 ∈ V
1312, 12mpoex 8077 . . . 4 (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)) ∈ V
14 eqid 2725 . . . . 5 ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩}) = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩})
1514algmulr 42665 . . . 4 ((π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)) ∈ V β†’ (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)) = (.rβ€˜({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩})))
1613, 15mp1i 13 . . 3 (𝑀 ∈ V β†’ (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)) = (.rβ€˜({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩})))
1711, 16eqtr4d 2768 . 2 (𝑀 ∈ V β†’ (.rβ€˜π΄) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)))
18 fvprc 6882 . . . . . 6 (Β¬ 𝑀 ∈ V β†’ (MEndoβ€˜π‘€) = βˆ…)
191, 18eqtrid 2777 . . . . 5 (Β¬ 𝑀 ∈ V β†’ 𝐴 = βˆ…)
2019fveq2d 6894 . . . 4 (Β¬ 𝑀 ∈ V β†’ (.rβ€˜π΄) = (.rβ€˜βˆ…))
21 mulridx 17269 . . . . 5 .r = Slot (.rβ€˜ndx)
2221str0 17152 . . . 4 βˆ… = (.rβ€˜βˆ…)
2320, 22eqtr4di 2783 . . 3 (Β¬ 𝑀 ∈ V β†’ (.rβ€˜π΄) = βˆ…)
2419fveq2d 6894 . . . . . . 7 (Β¬ 𝑀 ∈ V β†’ (Baseβ€˜π΄) = (Baseβ€˜βˆ…))
252, 24eqtrid 2777 . . . . . 6 (Β¬ 𝑀 ∈ V β†’ 𝐡 = (Baseβ€˜βˆ…))
26 base0 17179 . . . . . 6 βˆ… = (Baseβ€˜βˆ…)
2725, 26eqtr4di 2783 . . . . 5 (Β¬ 𝑀 ∈ V β†’ 𝐡 = βˆ…)
2827olcd 872 . . . 4 (Β¬ 𝑀 ∈ V β†’ (𝐡 = βˆ… ∨ 𝐡 = βˆ…))
29 0mpo0 7497 . . . 4 ((𝐡 = βˆ… ∨ 𝐡 = βˆ…) β†’ (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)) = βˆ…)
3028, 29syl 17 . . 3 (Β¬ 𝑀 ∈ V β†’ (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)) = βˆ…)
3123, 30eqtr4d 2768 . 2 (Β¬ 𝑀 ∈ V β†’ (.rβ€˜π΄) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)))
3217, 31pm2.61i 182 1 (.rβ€˜π΄) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ∨ wo 845   = wceq 1533   ∈ wcel 2098  Vcvv 3463   βˆͺ cun 3939  βˆ…c0 4319  {csn 4625  {cpr 4627  {ctp 4629  βŸ¨cop 4631   Γ— cxp 5671   ∘ ccom 5677  β€˜cfv 6543  (class class class)co 7413   ∈ cmpo 7415   ∘f cof 7677  ndxcnx 17156  Basecbs 17174  +gcplusg 17227  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231   LMHom clmhm 20903  MEndocmend 42660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-n0 12498  df-z 12584  df-uz 12848  df-fz 13512  df-struct 17110  df-slot 17145  df-ndx 17157  df-base 17175  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-lmhm 20906  df-mend 42661
This theorem is referenced by:  mendmulr  42673
  Copyright terms: Public domain W3C validator