Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendmulrfval Structured version   Visualization version   GIF version

Theorem mendmulrfval 41914
Description: Multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
mendmulrfval.a 𝐴 = (MEndoβ€˜π‘€)
mendmulrfval.b 𝐡 = (Baseβ€˜π΄)
Assertion
Ref Expression
mendmulrfval (.rβ€˜π΄) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))
Distinct variable groups:   π‘₯,𝑦,𝐡   π‘₯,𝑀,𝑦
Allowed substitution hints:   𝐴(π‘₯,𝑦)

Proof of Theorem mendmulrfval
StepHypRef Expression
1 mendmulrfval.a . . . . 5 𝐴 = (MEndoβ€˜π‘€)
2 mendmulrfval.b . . . . . . 7 𝐡 = (Baseβ€˜π΄)
31mendbas 41911 . . . . . . 7 (𝑀 LMHom 𝑀) = (Baseβ€˜π΄)
42, 3eqtr4i 2763 . . . . . 6 𝐡 = (𝑀 LMHom 𝑀)
5 eqid 2732 . . . . . 6 (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦)) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))
6 eqid 2732 . . . . . 6 (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))
7 eqid 2732 . . . . . 6 (Scalarβ€˜π‘€) = (Scalarβ€˜π‘€)
8 eqid 2732 . . . . . 6 (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦)) = (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))
94, 5, 6, 7, 8mendval 41910 . . . . 5 (𝑀 ∈ V β†’ (MEndoβ€˜π‘€) = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩}))
101, 9eqtrid 2784 . . . 4 (𝑀 ∈ V β†’ 𝐴 = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩}))
1110fveq2d 6892 . . 3 (𝑀 ∈ V β†’ (.rβ€˜π΄) = (.rβ€˜({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩})))
122fvexi 6902 . . . . 5 𝐡 ∈ V
1312, 12mpoex 8062 . . . 4 (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)) ∈ V
14 eqid 2732 . . . . 5 ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩}) = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩})
1514algmulr 41907 . . . 4 ((π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)) ∈ V β†’ (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)) = (.rβ€˜({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩})))
1613, 15mp1i 13 . . 3 (𝑀 ∈ V β†’ (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)) = (.rβ€˜({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘€)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))⟩})))
1711, 16eqtr4d 2775 . 2 (𝑀 ∈ V β†’ (.rβ€˜π΄) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)))
18 fvprc 6880 . . . . . 6 (Β¬ 𝑀 ∈ V β†’ (MEndoβ€˜π‘€) = βˆ…)
191, 18eqtrid 2784 . . . . 5 (Β¬ 𝑀 ∈ V β†’ 𝐴 = βˆ…)
2019fveq2d 6892 . . . 4 (Β¬ 𝑀 ∈ V β†’ (.rβ€˜π΄) = (.rβ€˜βˆ…))
21 mulridx 17235 . . . . 5 .r = Slot (.rβ€˜ndx)
2221str0 17118 . . . 4 βˆ… = (.rβ€˜βˆ…)
2320, 22eqtr4di 2790 . . 3 (Β¬ 𝑀 ∈ V β†’ (.rβ€˜π΄) = βˆ…)
2419fveq2d 6892 . . . . . . 7 (Β¬ 𝑀 ∈ V β†’ (Baseβ€˜π΄) = (Baseβ€˜βˆ…))
252, 24eqtrid 2784 . . . . . 6 (Β¬ 𝑀 ∈ V β†’ 𝐡 = (Baseβ€˜βˆ…))
26 base0 17145 . . . . . 6 βˆ… = (Baseβ€˜βˆ…)
2725, 26eqtr4di 2790 . . . . 5 (Β¬ 𝑀 ∈ V β†’ 𝐡 = βˆ…)
2827olcd 872 . . . 4 (Β¬ 𝑀 ∈ V β†’ (𝐡 = βˆ… ∨ 𝐡 = βˆ…))
29 0mpo0 7488 . . . 4 ((𝐡 = βˆ… ∨ 𝐡 = βˆ…) β†’ (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)) = βˆ…)
3028, 29syl 17 . . 3 (Β¬ 𝑀 ∈ V β†’ (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)) = βˆ…)
3123, 30eqtr4d 2775 . 2 (Β¬ 𝑀 ∈ V β†’ (.rβ€˜π΄) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)))
3217, 31pm2.61i 182 1 (.rβ€˜π΄) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ∨ wo 845   = wceq 1541   ∈ wcel 2106  Vcvv 3474   βˆͺ cun 3945  βˆ…c0 4321  {csn 4627  {cpr 4629  {ctp 4631  βŸ¨cop 4633   Γ— cxp 5673   ∘ ccom 5679  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407   ∘f cof 7664  ndxcnx 17122  Basecbs 17140  +gcplusg 17193  .rcmulr 17194  Scalarcsca 17196   ·𝑠 cvsca 17197   LMHom clmhm 20622  MEndocmend 41902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-lmhm 20625  df-mend 41903
This theorem is referenced by:  mendmulr  41915
  Copyright terms: Public domain W3C validator