Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendmulrfval Structured version   Visualization version   GIF version

Theorem mendmulrfval 43195
Description: Multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
mendmulrfval.a 𝐴 = (MEndo‘𝑀)
mendmulrfval.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
mendmulrfval (.r𝐴) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑀,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem mendmulrfval
StepHypRef Expression
1 mendmulrfval.a . . . . 5 𝐴 = (MEndo‘𝑀)
2 mendmulrfval.b . . . . . . 7 𝐵 = (Base‘𝐴)
31mendbas 43192 . . . . . . 7 (𝑀 LMHom 𝑀) = (Base‘𝐴)
42, 3eqtr4i 2768 . . . . . 6 𝐵 = (𝑀 LMHom 𝑀)
5 eqid 2737 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))
6 eqid 2737 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
7 eqid 2737 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
8 eqid 2737 . . . . . 6 (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦)) = (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
94, 5, 6, 7, 8mendval 43191 . . . . 5 (𝑀 ∈ V → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩}))
101, 9eqtrid 2789 . . . 4 (𝑀 ∈ V → 𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩}))
1110fveq2d 6910 . . 3 (𝑀 ∈ V → (.r𝐴) = (.r‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩})))
122fvexi 6920 . . . . 5 𝐵 ∈ V
1312, 12mpoex 8104 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) ∈ V
14 eqid 2737 . . . . 5 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩})
1514algmulr 43188 . . . 4 ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = (.r‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩})))
1613, 15mp1i 13 . . 3 (𝑀 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = (.r‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩})))
1711, 16eqtr4d 2780 . 2 (𝑀 ∈ V → (.r𝐴) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)))
18 fvprc 6898 . . . . . 6 𝑀 ∈ V → (MEndo‘𝑀) = ∅)
191, 18eqtrid 2789 . . . . 5 𝑀 ∈ V → 𝐴 = ∅)
2019fveq2d 6910 . . . 4 𝑀 ∈ V → (.r𝐴) = (.r‘∅))
21 mulridx 17338 . . . . 5 .r = Slot (.r‘ndx)
2221str0 17226 . . . 4 ∅ = (.r‘∅)
2320, 22eqtr4di 2795 . . 3 𝑀 ∈ V → (.r𝐴) = ∅)
2419fveq2d 6910 . . . . . . 7 𝑀 ∈ V → (Base‘𝐴) = (Base‘∅))
252, 24eqtrid 2789 . . . . . 6 𝑀 ∈ V → 𝐵 = (Base‘∅))
26 base0 17252 . . . . . 6 ∅ = (Base‘∅)
2725, 26eqtr4di 2795 . . . . 5 𝑀 ∈ V → 𝐵 = ∅)
2827olcd 875 . . . 4 𝑀 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅))
29 0mpo0 7516 . . . 4 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = ∅)
3028, 29syl 17 . . 3 𝑀 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = ∅)
3123, 30eqtr4d 2780 . 2 𝑀 ∈ V → (.r𝐴) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)))
3217, 31pm2.61i 182 1 (.r𝐴) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 848   = wceq 1540  wcel 2108  Vcvv 3480  cun 3949  c0 4333  {csn 4626  {cpr 4628  {ctp 4630  cop 4632   × cxp 5683  ccom 5689  cfv 6561  (class class class)co 7431  cmpo 7433  f cof 7695  ndxcnx 17230  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  Scalarcsca 17300   ·𝑠 cvsca 17301   LMHom clmhm 21018  MEndocmend 43183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-lmhm 21021  df-mend 43184
This theorem is referenced by:  mendmulr  43196
  Copyright terms: Public domain W3C validator