Step | Hyp | Ref
| Expression |
1 | | mendmulrfval.a |
. . . . 5
β’ π΄ = (MEndoβπ) |
2 | | mendmulrfval.b |
. . . . . . 7
β’ π΅ = (Baseβπ΄) |
3 | 1 | mendbas 41911 |
. . . . . . 7
β’ (π LMHom π) = (Baseβπ΄) |
4 | 2, 3 | eqtr4i 2763 |
. . . . . 6
β’ π΅ = (π LMHom π) |
5 | | eqid 2732 |
. . . . . 6
β’ (π₯ β π΅, π¦ β π΅ β¦ (π₯ βf
(+gβπ)π¦)) = (π₯ β π΅, π¦ β π΅ β¦ (π₯ βf
(+gβπ)π¦)) |
6 | | eqid 2732 |
. . . . . 6
β’ (π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦)) = (π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦)) |
7 | | eqid 2732 |
. . . . . 6
β’
(Scalarβπ) =
(Scalarβπ) |
8 | | eqid 2732 |
. . . . . 6
β’ (π₯ β
(Baseβ(Scalarβπ)), π¦ β π΅ β¦ (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)π¦)) = (π₯ β (Baseβ(Scalarβπ)), π¦ β π΅ β¦ (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)π¦)) |
9 | 4, 5, 6, 7, 8 | mendval 41910 |
. . . . 5
β’ (π β V β
(MEndoβπ) =
({β¨(Baseβndx), π΅β©, β¨(+gβndx),
(π₯ β π΅, π¦ β π΅ β¦ (π₯ βf
(+gβπ)π¦))β©, β¨(.rβndx),
(π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦))β©} βͺ {β¨(Scalarβndx),
(Scalarβπ)β©,
β¨( Β·π βndx), (π₯ β (Baseβ(Scalarβπ)), π¦ β π΅ β¦ (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)π¦))β©})) |
10 | 1, 9 | eqtrid 2784 |
. . . 4
β’ (π β V β π΄ = ({β¨(Baseβndx),
π΅β©,
β¨(+gβndx), (π₯ β π΅, π¦ β π΅ β¦ (π₯ βf
(+gβπ)π¦))β©, β¨(.rβndx),
(π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦))β©} βͺ {β¨(Scalarβndx),
(Scalarβπ)β©,
β¨( Β·π βndx), (π₯ β (Baseβ(Scalarβπ)), π¦ β π΅ β¦ (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)π¦))β©})) |
11 | 10 | fveq2d 6892 |
. . 3
β’ (π β V β
(.rβπ΄) =
(.rβ({β¨(Baseβndx), π΅β©, β¨(+gβndx),
(π₯ β π΅, π¦ β π΅ β¦ (π₯ βf
(+gβπ)π¦))β©, β¨(.rβndx),
(π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦))β©} βͺ {β¨(Scalarβndx),
(Scalarβπ)β©,
β¨( Β·π βndx), (π₯ β (Baseβ(Scalarβπ)), π¦ β π΅ β¦ (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)π¦))β©}))) |
12 | 2 | fvexi 6902 |
. . . . 5
β’ π΅ β V |
13 | 12, 12 | mpoex 8062 |
. . . 4
β’ (π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦)) β V |
14 | | eqid 2732 |
. . . . 5
β’
({β¨(Baseβndx), π΅β©, β¨(+gβndx),
(π₯ β π΅, π¦ β π΅ β¦ (π₯ βf
(+gβπ)π¦))β©, β¨(.rβndx),
(π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦))β©} βͺ {β¨(Scalarβndx),
(Scalarβπ)β©,
β¨( Β·π βndx), (π₯ β (Baseβ(Scalarβπ)), π¦ β π΅ β¦ (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)π¦))β©}) = ({β¨(Baseβndx), π΅β©,
β¨(+gβndx), (π₯ β π΅, π¦ β π΅ β¦ (π₯ βf
(+gβπ)π¦))β©, β¨(.rβndx),
(π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦))β©} βͺ {β¨(Scalarβndx),
(Scalarβπ)β©,
β¨( Β·π βndx), (π₯ β (Baseβ(Scalarβπ)), π¦ β π΅ β¦ (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)π¦))β©}) |
15 | 14 | algmulr 41907 |
. . . 4
β’ ((π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦)) β V β (π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦)) =
(.rβ({β¨(Baseβndx), π΅β©, β¨(+gβndx),
(π₯ β π΅, π¦ β π΅ β¦ (π₯ βf
(+gβπ)π¦))β©, β¨(.rβndx),
(π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦))β©} βͺ {β¨(Scalarβndx),
(Scalarβπ)β©,
β¨( Β·π βndx), (π₯ β (Baseβ(Scalarβπ)), π¦ β π΅ β¦ (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)π¦))β©}))) |
16 | 13, 15 | mp1i 13 |
. . 3
β’ (π β V β (π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦)) =
(.rβ({β¨(Baseβndx), π΅β©, β¨(+gβndx),
(π₯ β π΅, π¦ β π΅ β¦ (π₯ βf
(+gβπ)π¦))β©, β¨(.rβndx),
(π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦))β©} βͺ {β¨(Scalarβndx),
(Scalarβπ)β©,
β¨( Β·π βndx), (π₯ β (Baseβ(Scalarβπ)), π¦ β π΅ β¦ (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)π¦))β©}))) |
17 | 11, 16 | eqtr4d 2775 |
. 2
β’ (π β V β
(.rβπ΄) =
(π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦))) |
18 | | fvprc 6880 |
. . . . . 6
β’ (Β¬
π β V β
(MEndoβπ) =
β
) |
19 | 1, 18 | eqtrid 2784 |
. . . . 5
β’ (Β¬
π β V β π΄ = β
) |
20 | 19 | fveq2d 6892 |
. . . 4
β’ (Β¬
π β V β
(.rβπ΄) =
(.rββ
)) |
21 | | mulridx 17235 |
. . . . 5
β’
.r = Slot (.rβndx) |
22 | 21 | str0 17118 |
. . . 4
β’ β
=
(.rββ
) |
23 | 20, 22 | eqtr4di 2790 |
. . 3
β’ (Β¬
π β V β
(.rβπ΄) =
β
) |
24 | 19 | fveq2d 6892 |
. . . . . . 7
β’ (Β¬
π β V β
(Baseβπ΄) =
(Baseββ
)) |
25 | 2, 24 | eqtrid 2784 |
. . . . . 6
β’ (Β¬
π β V β π΅ =
(Baseββ
)) |
26 | | base0 17145 |
. . . . . 6
β’ β
=
(Baseββ
) |
27 | 25, 26 | eqtr4di 2790 |
. . . . 5
β’ (Β¬
π β V β π΅ = β
) |
28 | 27 | olcd 872 |
. . . 4
β’ (Β¬
π β V β (π΅ = β
β¨ π΅ = β
)) |
29 | | 0mpo0 7488 |
. . . 4
β’ ((π΅ = β
β¨ π΅ = β
) β (π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦)) = β
) |
30 | 28, 29 | syl 17 |
. . 3
β’ (Β¬
π β V β (π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦)) = β
) |
31 | 23, 30 | eqtr4d 2775 |
. 2
β’ (Β¬
π β V β
(.rβπ΄) =
(π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦))) |
32 | 17, 31 | pm2.61i 182 |
1
β’
(.rβπ΄) = (π₯ β π΅, π¦ β π΅ β¦ (π₯ β π¦)) |