MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmndplusg Structured version   Visualization version   GIF version

Theorem efmndplusg 18783
Description: The group operation of a monoid of endofunctions is the function composition. (Contributed by AV, 27-Jan-2024.)
Hypotheses
Ref Expression
efmndtset.g 𝐺 = (EndoFMnd‘𝐴)
efmndplusg.b 𝐵 = (Base‘𝐺)
efmndplusg.p + = (+g𝐺)
Assertion
Ref Expression
efmndplusg + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔
Allowed substitution hints:   + (𝑓,𝑔)   𝐺(𝑓,𝑔)

Proof of Theorem efmndplusg
StepHypRef Expression
1 efmndtset.g . . . . 5 𝐺 = (EndoFMnd‘𝐴)
2 efmndplusg.b . . . . . 6 𝐵 = (Base‘𝐺)
31, 2efmndbas 18774 . . . . 5 𝐵 = (𝐴m 𝐴)
4 eqid 2729 . . . . 5 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
5 eqid 2729 . . . . 5 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
61, 3, 4, 5efmnd 18773 . . . 4 (𝐴 ∈ V → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩})
76fveq2d 6844 . . 3 (𝐴 ∈ V → (+g𝐺) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩}))
8 efmndplusg.p . . 3 + = (+g𝐺)
92fvexi 6854 . . . . 5 𝐵 ∈ V
109, 9mpoex 8037 . . . 4 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ∈ V
11 eqid 2729 . . . . 5 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩}
1211topgrpplusg 17302 . . . 4 ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ∈ V → (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩}))
1310, 12ax-mp 5 . . 3 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩})
147, 8, 133eqtr4g 2789 . 2 (𝐴 ∈ V → + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)))
15 fvprc 6832 . . . . . 6 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅)
161, 15eqtrid 2776 . . . . 5 𝐴 ∈ V → 𝐺 = ∅)
1716fveq2d 6844 . . . 4 𝐴 ∈ V → (+g𝐺) = (+g‘∅))
18 plusgid 17223 . . . . 5 +g = Slot (+g‘ndx)
1918str0 17135 . . . 4 ∅ = (+g‘∅)
2017, 8, 193eqtr4g 2789 . . 3 𝐴 ∈ V → + = ∅)
2116fveq2d 6844 . . . . . 6 𝐴 ∈ V → (Base‘𝐺) = (Base‘∅))
22 base0 17160 . . . . . 6 ∅ = (Base‘∅)
2321, 2, 223eqtr4g 2789 . . . . 5 𝐴 ∈ V → 𝐵 = ∅)
2423olcd 874 . . . 4 𝐴 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅))
25 0mpo0 7452 . . . 4 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = ∅)
2624, 25syl 17 . . 3 𝐴 ∈ V → (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = ∅)
2720, 26eqtr4d 2767 . 2 𝐴 ∈ V → + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)))
2814, 27pm2.61i 182 1 + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  𝒫 cpw 4559  {csn 4585  {ctp 4589  cop 4591   × cxp 5629  ccom 5635  cfv 6499  cmpo 7371  ndxcnx 17139  Basecbs 17155  +gcplusg 17196  TopSetcts 17202  tcpt 17377  EndoFMndcefmnd 18771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-tset 17215  df-efmnd 18772
This theorem is referenced by:  efmndov  18784  submefmnd  18798  symgplusg  19289  efmndtmd  23964
  Copyright terms: Public domain W3C validator