| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efmndplusg | Structured version Visualization version GIF version | ||
| Description: The group operation of a monoid of endofunctions is the function composition. (Contributed by AV, 27-Jan-2024.) |
| Ref | Expression |
|---|---|
| efmndtset.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
| efmndplusg.b | ⊢ 𝐵 = (Base‘𝐺) |
| efmndplusg.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| efmndplusg | ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndtset.g | . . . . 5 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
| 2 | efmndplusg.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | 1, 2 | efmndbas 18774 | . . . . 5 ⊢ 𝐵 = (𝐴 ↑m 𝐴) |
| 4 | eqid 2731 | . . . . 5 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴})) | |
| 6 | 1, 3, 4, 5 | efmnd 18773 | . . . 4 ⊢ (𝐴 ∈ V → 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
| 7 | 6 | fveq2d 6821 | . . 3 ⊢ (𝐴 ∈ V → (+g‘𝐺) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
| 8 | efmndplusg.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 9 | 2 | fvexi 6831 | . . . . 5 ⊢ 𝐵 ∈ V |
| 10 | 9, 9 | mpoex 8006 | . . . 4 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ∈ V |
| 11 | eqid 2731 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} | |
| 12 | 11 | topgrpplusg 17262 | . . . 4 ⊢ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ∈ V → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
| 13 | 10, 12 | ax-mp 5 | . . 3 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
| 14 | 7, 8, 13 | 3eqtr4g 2791 | . 2 ⊢ (𝐴 ∈ V → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))) |
| 15 | fvprc 6809 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅) | |
| 16 | 1, 15 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 𝐺 = ∅) |
| 17 | 16 | fveq2d 6821 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (+g‘𝐺) = (+g‘∅)) |
| 18 | plusgid 17183 | . . . . 5 ⊢ +g = Slot (+g‘ndx) | |
| 19 | 18 | str0 17095 | . . . 4 ⊢ ∅ = (+g‘∅) |
| 20 | 17, 8, 19 | 3eqtr4g 2791 | . . 3 ⊢ (¬ 𝐴 ∈ V → + = ∅) |
| 21 | 16 | fveq2d 6821 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (Base‘𝐺) = (Base‘∅)) |
| 22 | base0 17120 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
| 23 | 21, 2, 22 | 3eqtr4g 2791 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 𝐵 = ∅) |
| 24 | 23 | olcd 874 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅)) |
| 25 | 0mpo0 7424 | . . . 4 ⊢ ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = ∅) | |
| 26 | 24, 25 | syl 17 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = ∅) |
| 27 | 20, 26 | eqtr4d 2769 | . 2 ⊢ (¬ 𝐴 ∈ V → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))) |
| 28 | 14, 27 | pm2.61i 182 | 1 ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4278 𝒫 cpw 4545 {csn 4571 {ctp 4575 〈cop 4577 × cxp 5609 ∘ ccom 5615 ‘cfv 6476 ∈ cmpo 7343 ndxcnx 17099 Basecbs 17115 +gcplusg 17156 TopSetcts 17162 ∏tcpt 17337 EndoFMndcefmnd 18771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-tset 17175 df-efmnd 18772 |
| This theorem is referenced by: efmndov 18784 submefmnd 18798 symgplusg 19290 efmndtmd 24011 |
| Copyright terms: Public domain | W3C validator |