Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efmndplusg | Structured version Visualization version GIF version |
Description: The group operation of a monoid of endofunctions is the function composition. (Contributed by AV, 27-Jan-2024.) |
Ref | Expression |
---|---|
efmndtset.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
efmndplusg.b | ⊢ 𝐵 = (Base‘𝐺) |
efmndplusg.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
efmndplusg | ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efmndtset.g | . . . . 5 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
2 | efmndplusg.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | efmndbas 18107 | . . . . 5 ⊢ 𝐵 = (𝐴 ↑m 𝐴) |
4 | eqid 2758 | . . . . 5 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) | |
5 | eqid 2758 | . . . . 5 ⊢ (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴})) | |
6 | 1, 3, 4, 5 | efmnd 18106 | . . . 4 ⊢ (𝐴 ∈ V → 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
7 | 6 | fveq2d 6666 | . . 3 ⊢ (𝐴 ∈ V → (+g‘𝐺) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
8 | efmndplusg.p | . . 3 ⊢ + = (+g‘𝐺) | |
9 | 2 | fvexi 6676 | . . . . 5 ⊢ 𝐵 ∈ V |
10 | 9, 9 | mpoex 7787 | . . . 4 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ∈ V |
11 | eqid 2758 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} | |
12 | 11 | topgrpplusg 16726 | . . . 4 ⊢ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ∈ V → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
13 | 10, 12 | ax-mp 5 | . . 3 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
14 | 7, 8, 13 | 3eqtr4g 2818 | . 2 ⊢ (𝐴 ∈ V → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))) |
15 | fvprc 6654 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅) | |
16 | 1, 15 | syl5eq 2805 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 𝐺 = ∅) |
17 | 16 | fveq2d 6666 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (+g‘𝐺) = (+g‘∅)) |
18 | plusgid 16659 | . . . . 5 ⊢ +g = Slot (+g‘ndx) | |
19 | 18 | str0 16598 | . . . 4 ⊢ ∅ = (+g‘∅) |
20 | 17, 8, 19 | 3eqtr4g 2818 | . . 3 ⊢ (¬ 𝐴 ∈ V → + = ∅) |
21 | 16 | fveq2d 6666 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (Base‘𝐺) = (Base‘∅)) |
22 | base0 16599 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
23 | 21, 2, 22 | 3eqtr4g 2818 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 𝐵 = ∅) |
24 | 23 | olcd 871 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅)) |
25 | 0mpo0 7236 | . . . 4 ⊢ ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = ∅) | |
26 | 24, 25 | syl 17 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = ∅) |
27 | 20, 26 | eqtr4d 2796 | . 2 ⊢ (¬ 𝐴 ∈ V → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))) |
28 | 14, 27 | pm2.61i 185 | 1 ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 844 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∅c0 4227 𝒫 cpw 4497 {csn 4525 {ctp 4529 〈cop 4531 × cxp 5525 ∘ ccom 5531 ‘cfv 6339 ∈ cmpo 7157 ndxcnx 16543 Basecbs 16546 +gcplusg 16628 TopSetcts 16634 ∏tcpt 16775 EndoFMndcefmnd 18104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-plusg 16641 df-tset 16647 df-efmnd 18105 |
This theorem is referenced by: efmndov 18117 submefmnd 18131 symgplusg 18583 efmndtmd 22806 |
Copyright terms: Public domain | W3C validator |