Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmndplusg Structured version   Visualization version   GIF version

Theorem efmndplusg 18116
 Description: The group operation of a monoid of endofunctions is the function composition. (Contributed by AV, 27-Jan-2024.)
Hypotheses
Ref Expression
efmndtset.g 𝐺 = (EndoFMnd‘𝐴)
efmndplusg.b 𝐵 = (Base‘𝐺)
efmndplusg.p + = (+g𝐺)
Assertion
Ref Expression
efmndplusg + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔
Allowed substitution hints:   + (𝑓,𝑔)   𝐺(𝑓,𝑔)

Proof of Theorem efmndplusg
StepHypRef Expression
1 efmndtset.g . . . . 5 𝐺 = (EndoFMnd‘𝐴)
2 efmndplusg.b . . . . . 6 𝐵 = (Base‘𝐺)
31, 2efmndbas 18107 . . . . 5 𝐵 = (𝐴m 𝐴)
4 eqid 2758 . . . . 5 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
5 eqid 2758 . . . . 5 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
61, 3, 4, 5efmnd 18106 . . . 4 (𝐴 ∈ V → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩})
76fveq2d 6666 . . 3 (𝐴 ∈ V → (+g𝐺) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩}))
8 efmndplusg.p . . 3 + = (+g𝐺)
92fvexi 6676 . . . . 5 𝐵 ∈ V
109, 9mpoex 7787 . . . 4 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ∈ V
11 eqid 2758 . . . . 5 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩}
1211topgrpplusg 16726 . . . 4 ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ∈ V → (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩}))
1310, 12ax-mp 5 . . 3 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩})
147, 8, 133eqtr4g 2818 . 2 (𝐴 ∈ V → + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)))
15 fvprc 6654 . . . . . 6 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅)
161, 15syl5eq 2805 . . . . 5 𝐴 ∈ V → 𝐺 = ∅)
1716fveq2d 6666 . . . 4 𝐴 ∈ V → (+g𝐺) = (+g‘∅))
18 plusgid 16659 . . . . 5 +g = Slot (+g‘ndx)
1918str0 16598 . . . 4 ∅ = (+g‘∅)
2017, 8, 193eqtr4g 2818 . . 3 𝐴 ∈ V → + = ∅)
2116fveq2d 6666 . . . . . 6 𝐴 ∈ V → (Base‘𝐺) = (Base‘∅))
22 base0 16599 . . . . . 6 ∅ = (Base‘∅)
2321, 2, 223eqtr4g 2818 . . . . 5 𝐴 ∈ V → 𝐵 = ∅)
2423olcd 871 . . . 4 𝐴 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅))
25 0mpo0 7236 . . . 4 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = ∅)
2624, 25syl 17 . . 3 𝐴 ∈ V → (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = ∅)
2720, 26eqtr4d 2796 . 2 𝐴 ∈ V → + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)))
2814, 27pm2.61i 185 1 + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∨ wo 844   = wceq 1538   ∈ wcel 2111  Vcvv 3409  ∅c0 4227  𝒫 cpw 4497  {csn 4525  {ctp 4529  ⟨cop 4531   × cxp 5525   ∘ ccom 5531  ‘cfv 6339   ∈ cmpo 7157  ndxcnx 16543  Basecbs 16546  +gcplusg 16628  TopSetcts 16634  ∏tcpt 16775  EndoFMndcefmnd 18104 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-uz 12288  df-fz 12945  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-plusg 16641  df-tset 16647  df-efmnd 18105 This theorem is referenced by:  efmndov  18117  submefmnd  18131  symgplusg  18583  efmndtmd  22806
 Copyright terms: Public domain W3C validator