![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efmndplusg | Structured version Visualization version GIF version |
Description: The group operation of a monoid of endofunctions is the function composition. (Contributed by AV, 27-Jan-2024.) |
Ref | Expression |
---|---|
efmndtset.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
efmndplusg.b | ⊢ 𝐵 = (Base‘𝐺) |
efmndplusg.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
efmndplusg | ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efmndtset.g | . . . . 5 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
2 | efmndplusg.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | efmndbas 18747 | . . . . 5 ⊢ 𝐵 = (𝐴 ↑m 𝐴) |
4 | eqid 2733 | . . . . 5 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) | |
5 | eqid 2733 | . . . . 5 ⊢ (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴})) | |
6 | 1, 3, 4, 5 | efmnd 18746 | . . . 4 ⊢ (𝐴 ∈ V → 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
7 | 6 | fveq2d 6891 | . . 3 ⊢ (𝐴 ∈ V → (+g‘𝐺) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
8 | efmndplusg.p | . . 3 ⊢ + = (+g‘𝐺) | |
9 | 2 | fvexi 6901 | . . . . 5 ⊢ 𝐵 ∈ V |
10 | 9, 9 | mpoex 8060 | . . . 4 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ∈ V |
11 | eqid 2733 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} | |
12 | 11 | topgrpplusg 17303 | . . . 4 ⊢ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ∈ V → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
13 | 10, 12 | ax-mp 5 | . . 3 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
14 | 7, 8, 13 | 3eqtr4g 2798 | . 2 ⊢ (𝐴 ∈ V → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))) |
15 | fvprc 6879 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅) | |
16 | 1, 15 | eqtrid 2785 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 𝐺 = ∅) |
17 | 16 | fveq2d 6891 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (+g‘𝐺) = (+g‘∅)) |
18 | plusgid 17219 | . . . . 5 ⊢ +g = Slot (+g‘ndx) | |
19 | 18 | str0 17117 | . . . 4 ⊢ ∅ = (+g‘∅) |
20 | 17, 8, 19 | 3eqtr4g 2798 | . . 3 ⊢ (¬ 𝐴 ∈ V → + = ∅) |
21 | 16 | fveq2d 6891 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (Base‘𝐺) = (Base‘∅)) |
22 | base0 17144 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
23 | 21, 2, 22 | 3eqtr4g 2798 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 𝐵 = ∅) |
24 | 23 | olcd 873 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅)) |
25 | 0mpo0 7486 | . . . 4 ⊢ ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = ∅) | |
26 | 24, 25 | syl 17 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = ∅) |
27 | 20, 26 | eqtr4d 2776 | . 2 ⊢ (¬ 𝐴 ∈ V → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))) |
28 | 14, 27 | pm2.61i 182 | 1 ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 846 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4320 𝒫 cpw 4600 {csn 4626 {ctp 4630 〈cop 4632 × cxp 5672 ∘ ccom 5678 ‘cfv 6539 ∈ cmpo 7405 ndxcnx 17121 Basecbs 17139 +gcplusg 17192 TopSetcts 17198 ∏tcpt 17379 EndoFMndcefmnd 18744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4907 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-tr 5264 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6296 df-ord 6363 df-on 6364 df-lim 6365 df-suc 6366 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-riota 7359 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8260 df-wrecs 8291 df-recs 8365 df-rdg 8404 df-1o 8460 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-pnf 11245 df-mnf 11246 df-xr 11247 df-ltxr 11248 df-le 11249 df-sub 11441 df-neg 11442 df-nn 12208 df-2 12270 df-3 12271 df-4 12272 df-5 12273 df-6 12274 df-7 12275 df-8 12276 df-9 12277 df-n0 12468 df-z 12554 df-uz 12818 df-fz 13480 df-struct 17075 df-slot 17110 df-ndx 17122 df-base 17140 df-plusg 17205 df-tset 17211 df-efmnd 18745 |
This theorem is referenced by: efmndov 18757 submefmnd 18771 symgplusg 19242 efmndtmd 23586 |
Copyright terms: Public domain | W3C validator |