Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efmndplusg | Structured version Visualization version GIF version |
Description: The group operation of a monoid of endofunctions is the function composition. (Contributed by AV, 27-Jan-2024.) |
Ref | Expression |
---|---|
efmndtset.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
efmndplusg.b | ⊢ 𝐵 = (Base‘𝐺) |
efmndplusg.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
efmndplusg | ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efmndtset.g | . . . . 5 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
2 | efmndplusg.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | efmndbas 18510 | . . . . 5 ⊢ 𝐵 = (𝐴 ↑m 𝐴) |
4 | eqid 2738 | . . . . 5 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) | |
5 | eqid 2738 | . . . . 5 ⊢ (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴})) | |
6 | 1, 3, 4, 5 | efmnd 18509 | . . . 4 ⊢ (𝐴 ∈ V → 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
7 | 6 | fveq2d 6778 | . . 3 ⊢ (𝐴 ∈ V → (+g‘𝐺) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
8 | efmndplusg.p | . . 3 ⊢ + = (+g‘𝐺) | |
9 | 2 | fvexi 6788 | . . . . 5 ⊢ 𝐵 ∈ V |
10 | 9, 9 | mpoex 7920 | . . . 4 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ∈ V |
11 | eqid 2738 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} | |
12 | 11 | topgrpplusg 17073 | . . . 4 ⊢ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ∈ V → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
13 | 10, 12 | ax-mp 5 | . . 3 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
14 | 7, 8, 13 | 3eqtr4g 2803 | . 2 ⊢ (𝐴 ∈ V → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))) |
15 | fvprc 6766 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅) | |
16 | 1, 15 | eqtrid 2790 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 𝐺 = ∅) |
17 | 16 | fveq2d 6778 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (+g‘𝐺) = (+g‘∅)) |
18 | plusgid 16989 | . . . . 5 ⊢ +g = Slot (+g‘ndx) | |
19 | 18 | str0 16890 | . . . 4 ⊢ ∅ = (+g‘∅) |
20 | 17, 8, 19 | 3eqtr4g 2803 | . . 3 ⊢ (¬ 𝐴 ∈ V → + = ∅) |
21 | 16 | fveq2d 6778 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (Base‘𝐺) = (Base‘∅)) |
22 | base0 16917 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
23 | 21, 2, 22 | 3eqtr4g 2803 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 𝐵 = ∅) |
24 | 23 | olcd 871 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅)) |
25 | 0mpo0 7358 | . . . 4 ⊢ ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = ∅) | |
26 | 24, 25 | syl 17 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = ∅) |
27 | 20, 26 | eqtr4d 2781 | . 2 ⊢ (¬ 𝐴 ∈ V → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))) |
28 | 14, 27 | pm2.61i 182 | 1 ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 844 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 𝒫 cpw 4533 {csn 4561 {ctp 4565 〈cop 4567 × cxp 5587 ∘ ccom 5593 ‘cfv 6433 ∈ cmpo 7277 ndxcnx 16894 Basecbs 16912 +gcplusg 16962 TopSetcts 16968 ∏tcpt 17149 EndoFMndcefmnd 18507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-tset 16981 df-efmnd 18508 |
This theorem is referenced by: efmndov 18520 submefmnd 18534 symgplusg 18990 efmndtmd 23252 |
Copyright terms: Public domain | W3C validator |