MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmndplusg Structured version   Visualization version   GIF version

Theorem efmndplusg 18915
Description: The group operation of a monoid of endofunctions is the function composition. (Contributed by AV, 27-Jan-2024.)
Hypotheses
Ref Expression
efmndtset.g 𝐺 = (EndoFMnd‘𝐴)
efmndplusg.b 𝐵 = (Base‘𝐺)
efmndplusg.p + = (+g𝐺)
Assertion
Ref Expression
efmndplusg + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔
Allowed substitution hints:   + (𝑓,𝑔)   𝐺(𝑓,𝑔)

Proof of Theorem efmndplusg
StepHypRef Expression
1 efmndtset.g . . . . 5 𝐺 = (EndoFMnd‘𝐴)
2 efmndplusg.b . . . . . 6 𝐵 = (Base‘𝐺)
31, 2efmndbas 18906 . . . . 5 𝐵 = (𝐴m 𝐴)
4 eqid 2740 . . . . 5 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
5 eqid 2740 . . . . 5 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
61, 3, 4, 5efmnd 18905 . . . 4 (𝐴 ∈ V → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩})
76fveq2d 6924 . . 3 (𝐴 ∈ V → (+g𝐺) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩}))
8 efmndplusg.p . . 3 + = (+g𝐺)
92fvexi 6934 . . . . 5 𝐵 ∈ V
109, 9mpoex 8120 . . . 4 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ∈ V
11 eqid 2740 . . . . 5 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩}
1211topgrpplusg 17422 . . . 4 ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ∈ V → (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩}))
1310, 12ax-mp 5 . . 3 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))⟩})
147, 8, 133eqtr4g 2805 . 2 (𝐴 ∈ V → + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)))
15 fvprc 6912 . . . . . 6 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅)
161, 15eqtrid 2792 . . . . 5 𝐴 ∈ V → 𝐺 = ∅)
1716fveq2d 6924 . . . 4 𝐴 ∈ V → (+g𝐺) = (+g‘∅))
18 plusgid 17338 . . . . 5 +g = Slot (+g‘ndx)
1918str0 17236 . . . 4 ∅ = (+g‘∅)
2017, 8, 193eqtr4g 2805 . . 3 𝐴 ∈ V → + = ∅)
2116fveq2d 6924 . . . . . 6 𝐴 ∈ V → (Base‘𝐺) = (Base‘∅))
22 base0 17263 . . . . . 6 ∅ = (Base‘∅)
2321, 2, 223eqtr4g 2805 . . . . 5 𝐴 ∈ V → 𝐵 = ∅)
2423olcd 873 . . . 4 𝐴 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅))
25 0mpo0 7533 . . . 4 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = ∅)
2624, 25syl 17 . . 3 𝐴 ∈ V → (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = ∅)
2720, 26eqtr4d 2783 . 2 𝐴 ∈ V → + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)))
2814, 27pm2.61i 182 1 + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 846   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  𝒫 cpw 4622  {csn 4648  {ctp 4652  cop 4654   × cxp 5698  ccom 5704  cfv 6573  cmpo 7450  ndxcnx 17240  Basecbs 17258  +gcplusg 17311  TopSetcts 17317  tcpt 17498  EndoFMndcefmnd 18903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-tset 17330  df-efmnd 18904
This theorem is referenced by:  efmndov  18916  submefmnd  18930  symgplusg  19424  efmndtmd  24130
  Copyright terms: Public domain W3C validator