| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubfvalALT | Structured version Visualization version GIF version | ||
| Description: Shorter proof of grpsubfval 18922 using ax-rep 5237. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubval.p | ⊢ + = (+g‘𝐺) |
| grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
| grpsubval.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubfvalALT | ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubval.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 2 | fveq2 6861 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 3 | grpsubval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 2, 3 | eqtr4di 2783 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
| 5 | fveq2 6861 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
| 6 | grpsubval.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
| 7 | 5, 6 | eqtr4di 2783 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
| 8 | eqidd 2731 | . . . . . 6 ⊢ (𝑔 = 𝐺 → 𝑥 = 𝑥) | |
| 9 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (invg‘𝑔) = (invg‘𝐺)) | |
| 10 | grpsubval.i | . . . . . . . 8 ⊢ 𝐼 = (invg‘𝐺) | |
| 11 | 9, 10 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (invg‘𝑔) = 𝐼) |
| 12 | 11 | fveq1d 6863 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((invg‘𝑔)‘𝑦) = (𝐼‘𝑦)) |
| 13 | 7, 8, 12 | oveq123d 7411 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)) = (𝑥 + (𝐼‘𝑦))) |
| 14 | 4, 4, 13 | mpoeq123dv 7467 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
| 15 | df-sbg 18877 | . . . 4 ⊢ -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)))) | |
| 16 | 3 | fvexi 6875 | . . . . 5 ⊢ 𝐵 ∈ V |
| 17 | 16, 16 | mpoex 8061 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) ∈ V |
| 18 | 14, 15, 17 | fvmpt 6971 | . . 3 ⊢ (𝐺 ∈ V → (-g‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
| 19 | 1, 18 | eqtrid 2777 | . 2 ⊢ (𝐺 ∈ V → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
| 20 | fvprc 6853 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (-g‘𝐺) = ∅) | |
| 21 | 1, 20 | eqtrid 2777 | . . 3 ⊢ (¬ 𝐺 ∈ V → − = ∅) |
| 22 | fvprc 6853 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
| 23 | 3, 22 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → 𝐵 = ∅) |
| 24 | 23 | olcd 874 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅)) |
| 25 | 0mpo0 7475 | . . . 4 ⊢ ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) = ∅) | |
| 26 | 24, 25 | syl 17 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) = ∅) |
| 27 | 21, 26 | eqtr4d 2768 | . 2 ⊢ (¬ 𝐺 ∈ V → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
| 28 | 19, 27 | pm2.61i 182 | 1 ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 Basecbs 17186 +gcplusg 17227 invgcminusg 18873 -gcsg 18874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-sbg 18877 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |