![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpsubfvalALT | Structured version Visualization version GIF version |
Description: Shorter proof of grpsubfval 19023 using ax-rep 5303. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubval.p | ⊢ + = (+g‘𝐺) |
grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
grpsubval.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubfvalALT | ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubval.m | . . 3 ⊢ − = (-g‘𝐺) | |
2 | fveq2 6920 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
3 | grpsubval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 2, 3 | eqtr4di 2798 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
5 | fveq2 6920 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
6 | grpsubval.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
7 | 5, 6 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
8 | eqidd 2741 | . . . . . 6 ⊢ (𝑔 = 𝐺 → 𝑥 = 𝑥) | |
9 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (invg‘𝑔) = (invg‘𝐺)) | |
10 | grpsubval.i | . . . . . . . 8 ⊢ 𝐼 = (invg‘𝐺) | |
11 | 9, 10 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (invg‘𝑔) = 𝐼) |
12 | 11 | fveq1d 6922 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((invg‘𝑔)‘𝑦) = (𝐼‘𝑦)) |
13 | 7, 8, 12 | oveq123d 7469 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)) = (𝑥 + (𝐼‘𝑦))) |
14 | 4, 4, 13 | mpoeq123dv 7525 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
15 | df-sbg 18978 | . . . 4 ⊢ -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)))) | |
16 | 3 | fvexi 6934 | . . . . 5 ⊢ 𝐵 ∈ V |
17 | 16, 16 | mpoex 8120 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) ∈ V |
18 | 14, 15, 17 | fvmpt 7029 | . . 3 ⊢ (𝐺 ∈ V → (-g‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
19 | 1, 18 | eqtrid 2792 | . 2 ⊢ (𝐺 ∈ V → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
20 | fvprc 6912 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (-g‘𝐺) = ∅) | |
21 | 1, 20 | eqtrid 2792 | . . 3 ⊢ (¬ 𝐺 ∈ V → − = ∅) |
22 | fvprc 6912 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
23 | 3, 22 | eqtrid 2792 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → 𝐵 = ∅) |
24 | 23 | olcd 873 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅)) |
25 | 0mpo0 7533 | . . . 4 ⊢ ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) = ∅) | |
26 | 24, 25 | syl 17 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) = ∅) |
27 | 21, 26 | eqtr4d 2783 | . 2 ⊢ (¬ 𝐺 ∈ V → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
28 | 19, 27 | pm2.61i 182 | 1 ⊢ − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 846 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 Basecbs 17258 +gcplusg 17311 invgcminusg 18974 -gcsg 18975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-sbg 18978 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |