MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubfvalALT Structured version   Visualization version   GIF version

Theorem grpsubfvalALT 18932
Description: Shorter proof of grpsubfval 18931 using ax-rep 5279. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpsubval.b 𝐵 = (Base‘𝐺)
grpsubval.p + = (+g𝐺)
grpsubval.i 𝐼 = (invg𝐺)
grpsubval.m = (-g𝐺)
Assertion
Ref Expression
grpsubfvalALT = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐼,𝑦   𝑥, + ,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem grpsubfvalALT
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpsubval.m . . 3 = (-g𝐺)
2 fveq2 6891 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 grpsubval.b . . . . . 6 𝐵 = (Base‘𝐺)
42, 3eqtr4di 2785 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
5 fveq2 6891 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
6 grpsubval.p . . . . . . 7 + = (+g𝐺)
75, 6eqtr4di 2785 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
8 eqidd 2728 . . . . . 6 (𝑔 = 𝐺𝑥 = 𝑥)
9 fveq2 6891 . . . . . . . 8 (𝑔 = 𝐺 → (invg𝑔) = (invg𝐺))
10 grpsubval.i . . . . . . . 8 𝐼 = (invg𝐺)
119, 10eqtr4di 2785 . . . . . . 7 (𝑔 = 𝐺 → (invg𝑔) = 𝐼)
1211fveq1d 6893 . . . . . 6 (𝑔 = 𝐺 → ((invg𝑔)‘𝑦) = (𝐼𝑦))
137, 8, 12oveq123d 7435 . . . . 5 (𝑔 = 𝐺 → (𝑥(+g𝑔)((invg𝑔)‘𝑦)) = (𝑥 + (𝐼𝑦)))
144, 4, 13mpoeq123dv 7489 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
15 df-sbg 18886 . . . 4 -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))))
163fvexi 6905 . . . . 5 𝐵 ∈ V
1716, 16mpoex 8078 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) ∈ V
1814, 15, 17fvmpt 6999 . . 3 (𝐺 ∈ V → (-g𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
191, 18eqtrid 2779 . 2 (𝐺 ∈ V → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
20 fvprc 6883 . . . 4 𝐺 ∈ V → (-g𝐺) = ∅)
211, 20eqtrid 2779 . . 3 𝐺 ∈ V → = ∅)
22 fvprc 6883 . . . . . 6 𝐺 ∈ V → (Base‘𝐺) = ∅)
233, 22eqtrid 2779 . . . . 5 𝐺 ∈ V → 𝐵 = ∅)
2423olcd 873 . . . 4 𝐺 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅))
25 0mpo0 7497 . . . 4 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) = ∅)
2624, 25syl 17 . . 3 𝐺 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) = ∅)
2721, 26eqtr4d 2770 . 2 𝐺 ∈ V → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
2819, 27pm2.61i 182 1 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 846   = wceq 1534  wcel 2099  Vcvv 3469  c0 4318  cfv 6542  (class class class)co 7414  cmpo 7416  Basecbs 17171  +gcplusg 17224  invgcminusg 18882  -gcsg 18883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-sbg 18886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator