| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlknonmpo | Structured version Visualization version GIF version | ||
| Description: (ClWWalksNOn‘𝐺) is an operator mapping a vertex 𝑣 and a nonnegative integer 𝑛 to the set of closed walks on 𝑣 of length 𝑛 as words over the set of vertices in a graph 𝐺. (Contributed by AV, 25-Feb-2022.) (Proof shortened by AV, 2-Mar-2024.) |
| Ref | Expression |
|---|---|
| clwwlknonmpo | ⊢ (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . 4 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
| 2 | eqidd 2730 | . . . 4 ⊢ (𝑔 = 𝐺 → ℕ0 = ℕ0) | |
| 3 | oveq2 7357 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑛 ClWWalksN 𝑔) = (𝑛 ClWWalksN 𝐺)) | |
| 4 | 3 | rabeqdv 3410 | . . . 4 ⊢ (𝑔 = 𝐺 → {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) |
| 5 | 1, 2, 4 | mpoeq123dv 7424 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑣 ∈ (Vtx‘𝑔), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣}) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
| 6 | df-clwwlknon 30032 | . . 3 ⊢ ClWWalksNOn = (𝑔 ∈ V ↦ (𝑣 ∈ (Vtx‘𝑔), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣})) | |
| 7 | fvex 6835 | . . . 4 ⊢ (Vtx‘𝐺) ∈ V | |
| 8 | nn0ex 12390 | . . . 4 ⊢ ℕ0 ∈ V | |
| 9 | 7, 8 | mpoex 8014 | . . 3 ⊢ (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) ∈ V |
| 10 | 5, 6, 9 | fvmpt 6930 | . 2 ⊢ (𝐺 ∈ V → (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
| 11 | fvprc 6814 | . . 3 ⊢ (¬ 𝐺 ∈ V → (ClWWalksNOn‘𝐺) = ∅) | |
| 12 | fvprc 6814 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (Vtx‘𝐺) = ∅) | |
| 13 | 12 | orcd 873 | . . . 4 ⊢ (¬ 𝐺 ∈ V → ((Vtx‘𝐺) = ∅ ∨ ℕ0 = ∅)) |
| 14 | 0mpo0 7432 | . . . 4 ⊢ (((Vtx‘𝐺) = ∅ ∨ ℕ0 = ∅) → (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = ∅) | |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = ∅) |
| 16 | 11, 15 | eqtr4d 2767 | . 2 ⊢ (¬ 𝐺 ∈ V → (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
| 17 | 10, 16 | pm2.61i 182 | 1 ⊢ (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {crab 3394 Vcvv 3436 ∅c0 4284 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 0cc0 11009 ℕ0cn0 12384 Vtxcvtx 28941 ClWWalksN cclwwlkn 29968 ClWWalksNOncclwwlknon 30031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-1cn 11067 ax-addcl 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-nn 12129 df-n0 12385 df-clwwlknon 30032 |
| This theorem is referenced by: clwwlknon 30034 clwwlk0on0 30036 clwwlknon0 30037 2clwwlk2clwwlklem 30290 |
| Copyright terms: Public domain | W3C validator |