MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonmpo Structured version   Visualization version   GIF version

Theorem clwwlknonmpo 30018
Description: (ClWWalksNOn‘𝐺) is an operator mapping a vertex 𝑣 and a nonnegative integer 𝑛 to the set of closed walks on 𝑣 of length 𝑛 as words over the set of vertices in a graph 𝐺. (Contributed by AV, 25-Feb-2022.) (Proof shortened by AV, 2-Mar-2024.)
Assertion
Ref Expression
clwwlknonmpo (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
Distinct variable group:   𝑛,𝐺,𝑣,𝑤

Proof of Theorem clwwlknonmpo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . 4 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
2 eqidd 2730 . . . 4 (𝑔 = 𝐺 → ℕ0 = ℕ0)
3 oveq2 7395 . . . . 5 (𝑔 = 𝐺 → (𝑛 ClWWalksN 𝑔) = (𝑛 ClWWalksN 𝐺))
43rabeqdv 3421 . . . 4 (𝑔 = 𝐺 → {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
51, 2, 4mpoeq123dv 7464 . . 3 (𝑔 = 𝐺 → (𝑣 ∈ (Vtx‘𝑔), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣}) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
6 df-clwwlknon 30017 . . 3 ClWWalksNOn = (𝑔 ∈ V ↦ (𝑣 ∈ (Vtx‘𝑔), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣}))
7 fvex 6871 . . . 4 (Vtx‘𝐺) ∈ V
8 nn0ex 12448 . . . 4 0 ∈ V
97, 8mpoex 8058 . . 3 (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) ∈ V
105, 6, 9fvmpt 6968 . 2 (𝐺 ∈ V → (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
11 fvprc 6850 . . 3 𝐺 ∈ V → (ClWWalksNOn‘𝐺) = ∅)
12 fvprc 6850 . . . . 5 𝐺 ∈ V → (Vtx‘𝐺) = ∅)
1312orcd 873 . . . 4 𝐺 ∈ V → ((Vtx‘𝐺) = ∅ ∨ ℕ0 = ∅))
14 0mpo0 7472 . . . 4 (((Vtx‘𝐺) = ∅ ∨ ℕ0 = ∅) → (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = ∅)
1513, 14syl 17 . . 3 𝐺 ∈ V → (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = ∅)
1611, 15eqtr4d 2767 . 2 𝐺 ∈ V → (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
1710, 16pm2.61i 182 1 (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  c0 4296  cfv 6511  (class class class)co 7387  cmpo 7389  0cc0 11068  0cn0 12442  Vtxcvtx 28923   ClWWalksN cclwwlkn 29953  ClWWalksNOncclwwlknon 30016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-n0 12443  df-clwwlknon 30017
This theorem is referenced by:  clwwlknon  30019  clwwlk0on0  30021  clwwlknon0  30022  2clwwlk2clwwlklem  30275
  Copyright terms: Public domain W3C validator