![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknonmpo | Structured version Visualization version GIF version |
Description: (ClWWalksNOnβπΊ) is an operator mapping a vertex π£ and a nonnegative integer π to the set of closed walks on π£ of length π as words over the set of vertices in a graph πΊ. (Contributed by AV, 25-Feb-2022.) (Proof shortened by AV, 2-Mar-2024.) |
Ref | Expression |
---|---|
clwwlknonmpo | β’ (ClWWalksNOnβπΊ) = (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6890 | . . . 4 β’ (π = πΊ β (Vtxβπ) = (VtxβπΊ)) | |
2 | eqidd 2726 | . . . 4 β’ (π = πΊ β β0 = β0) | |
3 | oveq2 7421 | . . . . 5 β’ (π = πΊ β (π ClWWalksN π) = (π ClWWalksN πΊ)) | |
4 | 3 | rabeqdv 3435 | . . . 4 β’ (π = πΊ β {π€ β (π ClWWalksN π) β£ (π€β0) = π£} = {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£}) |
5 | 1, 2, 4 | mpoeq123dv 7489 | . . 3 β’ (π = πΊ β (π£ β (Vtxβπ), π β β0 β¦ {π€ β (π ClWWalksN π) β£ (π€β0) = π£}) = (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£})) |
6 | df-clwwlknon 29937 | . . 3 β’ ClWWalksNOn = (π β V β¦ (π£ β (Vtxβπ), π β β0 β¦ {π€ β (π ClWWalksN π) β£ (π€β0) = π£})) | |
7 | fvex 6903 | . . . 4 β’ (VtxβπΊ) β V | |
8 | nn0ex 12503 | . . . 4 β’ β0 β V | |
9 | 7, 8 | mpoex 8077 | . . 3 β’ (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£}) β V |
10 | 5, 6, 9 | fvmpt 6998 | . 2 β’ (πΊ β V β (ClWWalksNOnβπΊ) = (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£})) |
11 | fvprc 6882 | . . 3 β’ (Β¬ πΊ β V β (ClWWalksNOnβπΊ) = β ) | |
12 | fvprc 6882 | . . . . 5 β’ (Β¬ πΊ β V β (VtxβπΊ) = β ) | |
13 | 12 | orcd 871 | . . . 4 β’ (Β¬ πΊ β V β ((VtxβπΊ) = β β¨ β0 = β )) |
14 | 0mpo0 7497 | . . . 4 β’ (((VtxβπΊ) = β β¨ β0 = β ) β (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£}) = β ) | |
15 | 13, 14 | syl 17 | . . 3 β’ (Β¬ πΊ β V β (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£}) = β ) |
16 | 11, 15 | eqtr4d 2768 | . 2 β’ (Β¬ πΊ β V β (ClWWalksNOnβπΊ) = (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£})) |
17 | 10, 16 | pm2.61i 182 | 1 β’ (ClWWalksNOnβπΊ) = (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£}) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β¨ wo 845 = wceq 1533 β wcel 2098 {crab 3419 Vcvv 3463 β c0 4319 βcfv 6543 (class class class)co 7413 β cmpo 7415 0cc0 11133 β0cn0 12497 Vtxcvtx 28848 ClWWalksN cclwwlkn 29873 ClWWalksNOncclwwlknon 29936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-1cn 11191 ax-addcl 11193 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12238 df-n0 12498 df-clwwlknon 29937 |
This theorem is referenced by: clwwlknon 29939 clwwlk0on0 29941 clwwlknon0 29942 2clwwlk2clwwlklem 30195 |
Copyright terms: Public domain | W3C validator |