![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknonmpo | Structured version Visualization version GIF version |
Description: (ClWWalksNOnβπΊ) is an operator mapping a vertex π£ and a nonnegative integer π to the set of closed walks on π£ of length π as words over the set of vertices in a graph πΊ. (Contributed by AV, 25-Feb-2022.) (Proof shortened by AV, 2-Mar-2024.) |
Ref | Expression |
---|---|
clwwlknonmpo | β’ (ClWWalksNOnβπΊ) = (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6888 | . . . 4 β’ (π = πΊ β (Vtxβπ) = (VtxβπΊ)) | |
2 | eqidd 2733 | . . . 4 β’ (π = πΊ β β0 = β0) | |
3 | oveq2 7413 | . . . . 5 β’ (π = πΊ β (π ClWWalksN π) = (π ClWWalksN πΊ)) | |
4 | 3 | rabeqdv 3447 | . . . 4 β’ (π = πΊ β {π€ β (π ClWWalksN π) β£ (π€β0) = π£} = {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£}) |
5 | 1, 2, 4 | mpoeq123dv 7480 | . . 3 β’ (π = πΊ β (π£ β (Vtxβπ), π β β0 β¦ {π€ β (π ClWWalksN π) β£ (π€β0) = π£}) = (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£})) |
6 | df-clwwlknon 29330 | . . 3 β’ ClWWalksNOn = (π β V β¦ (π£ β (Vtxβπ), π β β0 β¦ {π€ β (π ClWWalksN π) β£ (π€β0) = π£})) | |
7 | fvex 6901 | . . . 4 β’ (VtxβπΊ) β V | |
8 | nn0ex 12474 | . . . 4 β’ β0 β V | |
9 | 7, 8 | mpoex 8062 | . . 3 β’ (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£}) β V |
10 | 5, 6, 9 | fvmpt 6995 | . 2 β’ (πΊ β V β (ClWWalksNOnβπΊ) = (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£})) |
11 | fvprc 6880 | . . 3 β’ (Β¬ πΊ β V β (ClWWalksNOnβπΊ) = β ) | |
12 | fvprc 6880 | . . . . 5 β’ (Β¬ πΊ β V β (VtxβπΊ) = β ) | |
13 | 12 | orcd 871 | . . . 4 β’ (Β¬ πΊ β V β ((VtxβπΊ) = β β¨ β0 = β )) |
14 | 0mpo0 7488 | . . . 4 β’ (((VtxβπΊ) = β β¨ β0 = β ) β (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£}) = β ) | |
15 | 13, 14 | syl 17 | . . 3 β’ (Β¬ πΊ β V β (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£}) = β ) |
16 | 11, 15 | eqtr4d 2775 | . 2 β’ (Β¬ πΊ β V β (ClWWalksNOnβπΊ) = (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£})) |
17 | 10, 16 | pm2.61i 182 | 1 β’ (ClWWalksNOnβπΊ) = (π£ β (VtxβπΊ), π β β0 β¦ {π€ β (π ClWWalksN πΊ) β£ (π€β0) = π£}) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β¨ wo 845 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 β c0 4321 βcfv 6540 (class class class)co 7405 β cmpo 7407 0cc0 11106 β0cn0 12468 Vtxcvtx 28245 ClWWalksN cclwwlkn 29266 ClWWalksNOncclwwlknon 29329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-1cn 11164 ax-addcl 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-nn 12209 df-n0 12469 df-clwwlknon 29330 |
This theorem is referenced by: clwwlknon 29332 clwwlk0on0 29334 clwwlknon0 29335 2clwwlk2clwwlklem 29588 |
Copyright terms: Public domain | W3C validator |