MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonmpo Structured version   Visualization version   GIF version

Theorem clwwlknonmpo 29331
Description: (ClWWalksNOnβ€˜πΊ) is an operator mapping a vertex 𝑣 and a nonnegative integer 𝑛 to the set of closed walks on 𝑣 of length 𝑛 as words over the set of vertices in a graph 𝐺. (Contributed by AV, 25-Feb-2022.) (Proof shortened by AV, 2-Mar-2024.)
Assertion
Ref Expression
clwwlknonmpo (ClWWalksNOnβ€˜πΊ) = (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣})
Distinct variable group:   𝑛,𝐺,𝑣,𝑀

Proof of Theorem clwwlknonmpo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6888 . . . 4 (𝑔 = 𝐺 β†’ (Vtxβ€˜π‘”) = (Vtxβ€˜πΊ))
2 eqidd 2733 . . . 4 (𝑔 = 𝐺 β†’ β„•0 = β„•0)
3 oveq2 7413 . . . . 5 (𝑔 = 𝐺 β†’ (𝑛 ClWWalksN 𝑔) = (𝑛 ClWWalksN 𝐺))
43rabeqdv 3447 . . . 4 (𝑔 = 𝐺 β†’ {𝑀 ∈ (𝑛 ClWWalksN 𝑔) ∣ (π‘€β€˜0) = 𝑣} = {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣})
51, 2, 4mpoeq123dv 7480 . . 3 (𝑔 = 𝐺 β†’ (𝑣 ∈ (Vtxβ€˜π‘”), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝑔) ∣ (π‘€β€˜0) = 𝑣}) = (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣}))
6 df-clwwlknon 29330 . . 3 ClWWalksNOn = (𝑔 ∈ V ↦ (𝑣 ∈ (Vtxβ€˜π‘”), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝑔) ∣ (π‘€β€˜0) = 𝑣}))
7 fvex 6901 . . . 4 (Vtxβ€˜πΊ) ∈ V
8 nn0ex 12474 . . . 4 β„•0 ∈ V
97, 8mpoex 8062 . . 3 (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣}) ∈ V
105, 6, 9fvmpt 6995 . 2 (𝐺 ∈ V β†’ (ClWWalksNOnβ€˜πΊ) = (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣}))
11 fvprc 6880 . . 3 (Β¬ 𝐺 ∈ V β†’ (ClWWalksNOnβ€˜πΊ) = βˆ…)
12 fvprc 6880 . . . . 5 (Β¬ 𝐺 ∈ V β†’ (Vtxβ€˜πΊ) = βˆ…)
1312orcd 871 . . . 4 (Β¬ 𝐺 ∈ V β†’ ((Vtxβ€˜πΊ) = βˆ… ∨ β„•0 = βˆ…))
14 0mpo0 7488 . . . 4 (((Vtxβ€˜πΊ) = βˆ… ∨ β„•0 = βˆ…) β†’ (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣}) = βˆ…)
1513, 14syl 17 . . 3 (Β¬ 𝐺 ∈ V β†’ (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣}) = βˆ…)
1611, 15eqtr4d 2775 . 2 (Β¬ 𝐺 ∈ V β†’ (ClWWalksNOnβ€˜πΊ) = (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣}))
1710, 16pm2.61i 182 1 (ClWWalksNOnβ€˜πΊ) = (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣})
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ∨ wo 845   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474  βˆ…c0 4321  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  0cc0 11106  β„•0cn0 12468  Vtxcvtx 28245   ClWWalksN cclwwlkn 29266  ClWWalksNOncclwwlknon 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-1cn 11164  ax-addcl 11166
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-nn 12209  df-n0 12469  df-clwwlknon 29330
This theorem is referenced by:  clwwlknon  29332  clwwlk0on0  29334  clwwlknon0  29335  2clwwlk2clwwlklem  29588
  Copyright terms: Public domain W3C validator