MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonmpo Structured version   Visualization version   GIF version

Theorem clwwlknonmpo 30123
Description: (ClWWalksNOn‘𝐺) is an operator mapping a vertex 𝑣 and a nonnegative integer 𝑛 to the set of closed walks on 𝑣 of length 𝑛 as words over the set of vertices in a graph 𝐺. (Contributed by AV, 25-Feb-2022.) (Proof shortened by AV, 2-Mar-2024.)
Assertion
Ref Expression
clwwlknonmpo (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
Distinct variable group:   𝑛,𝐺,𝑣,𝑤

Proof of Theorem clwwlknonmpo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6922 . . . 4 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
2 eqidd 2741 . . . 4 (𝑔 = 𝐺 → ℕ0 = ℕ0)
3 oveq2 7458 . . . . 5 (𝑔 = 𝐺 → (𝑛 ClWWalksN 𝑔) = (𝑛 ClWWalksN 𝐺))
43rabeqdv 3459 . . . 4 (𝑔 = 𝐺 → {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
51, 2, 4mpoeq123dv 7527 . . 3 (𝑔 = 𝐺 → (𝑣 ∈ (Vtx‘𝑔), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣}) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
6 df-clwwlknon 30122 . . 3 ClWWalksNOn = (𝑔 ∈ V ↦ (𝑣 ∈ (Vtx‘𝑔), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣}))
7 fvex 6935 . . . 4 (Vtx‘𝐺) ∈ V
8 nn0ex 12561 . . . 4 0 ∈ V
97, 8mpoex 8122 . . 3 (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) ∈ V
105, 6, 9fvmpt 7031 . 2 (𝐺 ∈ V → (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
11 fvprc 6914 . . 3 𝐺 ∈ V → (ClWWalksNOn‘𝐺) = ∅)
12 fvprc 6914 . . . . 5 𝐺 ∈ V → (Vtx‘𝐺) = ∅)
1312orcd 872 . . . 4 𝐺 ∈ V → ((Vtx‘𝐺) = ∅ ∨ ℕ0 = ∅))
14 0mpo0 7535 . . . 4 (((Vtx‘𝐺) = ∅ ∨ ℕ0 = ∅) → (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = ∅)
1513, 14syl 17 . . 3 𝐺 ∈ V → (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = ∅)
1611, 15eqtr4d 2783 . 2 𝐺 ∈ V → (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
1710, 16pm2.61i 182 1 (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 846   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  c0 4352  cfv 6575  (class class class)co 7450  cmpo 7452  0cc0 11186  0cn0 12555  Vtxcvtx 29033   ClWWalksN cclwwlkn 30058  ClWWalksNOncclwwlknon 30121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-1cn 11244  ax-addcl 11246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-nn 12296  df-n0 12556  df-clwwlknon 30122
This theorem is referenced by:  clwwlknon  30124  clwwlk0on0  30126  clwwlknon0  30127  2clwwlk2clwwlklem  30380
  Copyright terms: Public domain W3C validator