MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonmpo Structured version   Visualization version   GIF version

Theorem clwwlknonmpo 29938
Description: (ClWWalksNOnβ€˜πΊ) is an operator mapping a vertex 𝑣 and a nonnegative integer 𝑛 to the set of closed walks on 𝑣 of length 𝑛 as words over the set of vertices in a graph 𝐺. (Contributed by AV, 25-Feb-2022.) (Proof shortened by AV, 2-Mar-2024.)
Assertion
Ref Expression
clwwlknonmpo (ClWWalksNOnβ€˜πΊ) = (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣})
Distinct variable group:   𝑛,𝐺,𝑣,𝑀

Proof of Theorem clwwlknonmpo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6890 . . . 4 (𝑔 = 𝐺 β†’ (Vtxβ€˜π‘”) = (Vtxβ€˜πΊ))
2 eqidd 2726 . . . 4 (𝑔 = 𝐺 β†’ β„•0 = β„•0)
3 oveq2 7421 . . . . 5 (𝑔 = 𝐺 β†’ (𝑛 ClWWalksN 𝑔) = (𝑛 ClWWalksN 𝐺))
43rabeqdv 3435 . . . 4 (𝑔 = 𝐺 β†’ {𝑀 ∈ (𝑛 ClWWalksN 𝑔) ∣ (π‘€β€˜0) = 𝑣} = {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣})
51, 2, 4mpoeq123dv 7489 . . 3 (𝑔 = 𝐺 β†’ (𝑣 ∈ (Vtxβ€˜π‘”), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝑔) ∣ (π‘€β€˜0) = 𝑣}) = (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣}))
6 df-clwwlknon 29937 . . 3 ClWWalksNOn = (𝑔 ∈ V ↦ (𝑣 ∈ (Vtxβ€˜π‘”), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝑔) ∣ (π‘€β€˜0) = 𝑣}))
7 fvex 6903 . . . 4 (Vtxβ€˜πΊ) ∈ V
8 nn0ex 12503 . . . 4 β„•0 ∈ V
97, 8mpoex 8077 . . 3 (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣}) ∈ V
105, 6, 9fvmpt 6998 . 2 (𝐺 ∈ V β†’ (ClWWalksNOnβ€˜πΊ) = (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣}))
11 fvprc 6882 . . 3 (Β¬ 𝐺 ∈ V β†’ (ClWWalksNOnβ€˜πΊ) = βˆ…)
12 fvprc 6882 . . . . 5 (Β¬ 𝐺 ∈ V β†’ (Vtxβ€˜πΊ) = βˆ…)
1312orcd 871 . . . 4 (Β¬ 𝐺 ∈ V β†’ ((Vtxβ€˜πΊ) = βˆ… ∨ β„•0 = βˆ…))
14 0mpo0 7497 . . . 4 (((Vtxβ€˜πΊ) = βˆ… ∨ β„•0 = βˆ…) β†’ (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣}) = βˆ…)
1513, 14syl 17 . . 3 (Β¬ 𝐺 ∈ V β†’ (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣}) = βˆ…)
1611, 15eqtr4d 2768 . 2 (Β¬ 𝐺 ∈ V β†’ (ClWWalksNOnβ€˜πΊ) = (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣}))
1710, 16pm2.61i 182 1 (ClWWalksNOnβ€˜πΊ) = (𝑣 ∈ (Vtxβ€˜πΊ), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣})
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ∨ wo 845   = wceq 1533   ∈ wcel 2098  {crab 3419  Vcvv 3463  βˆ…c0 4319  β€˜cfv 6543  (class class class)co 7413   ∈ cmpo 7415  0cc0 11133  β„•0cn0 12497  Vtxcvtx 28848   ClWWalksN cclwwlkn 29873  ClWWalksNOncclwwlknon 29936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-1cn 11191  ax-addcl 11193
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-nn 12238  df-n0 12498  df-clwwlknon 29937
This theorem is referenced by:  clwwlknon  29939  clwwlk0on0  29941  clwwlknon0  29942  2clwwlk2clwwlklem  30195
  Copyright terms: Public domain W3C validator