Step | Hyp | Ref
| Expression |
1 | | marepvfval.q |
. 2
⊢ 𝑄 = (𝑁 matRepV 𝑅) |
2 | | marepvfval.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐴) |
3 | 2 | fvexi 6518 |
. . . . 5
⊢ 𝐵 ∈ V |
4 | | marepvfval.v |
. . . . . . 7
⊢ 𝑉 = ((Base‘𝑅) ↑𝑚
𝑁) |
5 | 4 | ovexi 7015 |
. . . . . 6
⊢ 𝑉 ∈ V |
6 | 5 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝑉 ∈ V) |
7 | | mpoexga 7589 |
. . . . 5
⊢ ((𝐵 ∈ V ∧ 𝑉 ∈ V) → (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) ∈ V) |
8 | 3, 6, 7 | sylancr 579 |
. . . 4
⊢ ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) ∈ V) |
9 | | oveq12 6991 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅)) |
10 | | marepvfval.a |
. . . . . . . . 9
⊢ 𝐴 = (𝑁 Mat 𝑅) |
11 | 9, 10 | syl6eqr 2834 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴) |
12 | 11 | fveq2d 6508 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴)) |
13 | 12, 2 | syl6eqr 2834 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵) |
14 | | fveq2 6504 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
15 | 14 | adantl 474 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘𝑟) = (Base‘𝑅)) |
16 | | simpl 475 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 𝑛 = 𝑁) |
17 | 15, 16 | oveq12d 7000 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((Base‘𝑟) ↑𝑚 𝑛) = ((Base‘𝑅) ↑𝑚
𝑁)) |
18 | 17, 4 | syl6eqr 2834 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((Base‘𝑟) ↑𝑚 𝑛) = 𝑉) |
19 | | eqidd 2781 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)) = if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))) |
20 | 16, 16, 19 | mpoeq123dv 7053 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))) |
21 | 16, 20 | mpteq12dv 5017 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑘 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) |
22 | 13, 18, 21 | mpoeq123dv 7053 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑣 ∈ ((Base‘𝑟) ↑𝑚 𝑛) ↦ (𝑘 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) = (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
23 | | df-marepv 20887 |
. . . . 5
⊢ matRepV
= (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑣 ∈ ((Base‘𝑟) ↑𝑚 𝑛) ↦ (𝑘 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
24 | 22, 23 | ovmpoga 7126 |
. . . 4
⊢ ((𝑁 ∈ V ∧ 𝑅 ∈ V ∧ (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) ∈ V) → (𝑁 matRepV 𝑅) = (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
25 | 8, 24 | mpd3an3 1442 |
. . 3
⊢ ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
26 | 23 | mpondm0 7211 |
. . . . 5
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = ∅) |
27 | | mpo0 7061 |
. . . . 5
⊢ (𝑚 ∈ ∅, 𝑣 ∈ ((Base‘𝑅) ↑𝑚
𝑁) ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) = ∅ |
28 | 26, 27 | syl6eqr 2834 |
. . . 4
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = (𝑚 ∈ ∅, 𝑣 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
29 | 10 | fveq2i 6507 |
. . . . . . 7
⊢
(Base‘𝐴) =
(Base‘(𝑁 Mat 𝑅)) |
30 | 2, 29 | eqtri 2804 |
. . . . . 6
⊢ 𝐵 = (Base‘(𝑁 Mat 𝑅)) |
31 | | matbas0pc 20737 |
. . . . . 6
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) →
(Base‘(𝑁 Mat 𝑅)) = ∅) |
32 | 30, 31 | syl5eq 2828 |
. . . . 5
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅) |
33 | | mpoeq12 7051 |
. . . . 5
⊢ ((𝐵 = ∅ ∧ 𝑉 = ((Base‘𝑅) ↑𝑚
𝑁)) → (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) = (𝑚 ∈ ∅, 𝑣 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
34 | 32, 4, 33 | sylancl 578 |
. . . 4
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) = (𝑚 ∈ ∅, 𝑣 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
35 | 28, 34 | eqtr4d 2819 |
. . 3
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
36 | 25, 35 | pm2.61i 177 |
. 2
⊢ (𝑁 matRepV 𝑅) = (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) |
37 | 1, 36 | eqtri 2804 |
1
⊢ 𝑄 = (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) |