MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marepvfval Structured version   Visualization version   GIF version

Theorem marepvfval 22481
Description: First substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
marepvfval.a 𝐴 = (𝑁 Mat 𝑅)
marepvfval.b 𝐵 = (Base‘𝐴)
marepvfval.q 𝑄 = (𝑁 matRepV 𝑅)
marepvfval.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
Assertion
Ref Expression
marepvfval 𝑄 = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))))
Distinct variable groups:   𝐵,𝑚,𝑣   𝑖,𝑁,𝑗,𝑘,𝑚,𝑣   𝑅,𝑖,𝑗,𝑘,𝑚,𝑣   𝑚,𝑉,𝑣
Allowed substitution hints:   𝐴(𝑣,𝑖,𝑗,𝑘,𝑚)   𝐵(𝑖,𝑗,𝑘)   𝑄(𝑣,𝑖,𝑗,𝑘,𝑚)   𝑉(𝑖,𝑗,𝑘)

Proof of Theorem marepvfval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marepvfval.q . 2 𝑄 = (𝑁 matRepV 𝑅)
2 marepvfval.b . . . . . 6 𝐵 = (Base‘𝐴)
32fvexi 6842 . . . . 5 𝐵 ∈ V
4 marepvfval.v . . . . . . 7 𝑉 = ((Base‘𝑅) ↑m 𝑁)
54ovexi 7386 . . . . . 6 𝑉 ∈ V
65a1i 11 . . . . 5 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝑉 ∈ V)
7 mpoexga 8015 . . . . 5 ((𝐵 ∈ V ∧ 𝑉 ∈ V) → (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) ∈ V)
83, 6, 7sylancr 587 . . . 4 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) ∈ V)
9 oveq12 7361 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
10 marepvfval.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
119, 10eqtr4di 2786 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴)
1211fveq2d 6832 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴))
1312, 2eqtr4di 2786 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
14 fveq2 6828 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
1514adantl 481 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘𝑟) = (Base‘𝑅))
16 simpl 482 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
1715, 16oveq12d 7370 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → ((Base‘𝑟) ↑m 𝑛) = ((Base‘𝑅) ↑m 𝑁))
1817, 4eqtr4di 2786 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → ((Base‘𝑟) ↑m 𝑛) = 𝑉)
19 eqidd 2734 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)) = if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))
2016, 16, 19mpoeq123dv 7427 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑖𝑛, 𝑗𝑛 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))
2116, 20mpteq12dv 5180 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑘𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))))
2213, 18, 21mpoeq123dv 7427 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑣 ∈ ((Base‘𝑟) ↑m 𝑛) ↦ (𝑘𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
23 df-marepv 22475 . . . . 5 matRepV = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑣 ∈ ((Base‘𝑟) ↑m 𝑛) ↦ (𝑘𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
2422, 23ovmpoga 7506 . . . 4 ((𝑁 ∈ V ∧ 𝑅 ∈ V ∧ (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) ∈ V) → (𝑁 matRepV 𝑅) = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
258, 24mpd3an3 1464 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
2623mpondm0 7592 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = ∅)
2710fveq2i 6831 . . . . . . . 8 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
282, 27eqtri 2756 . . . . . . 7 𝐵 = (Base‘(𝑁 Mat 𝑅))
29 matbas0pc 22325 . . . . . . 7 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅)
3028, 29eqtrid 2780 . . . . . 6 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
3130orcd 873 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝐵 = ∅ ∨ 𝑉 = ∅))
32 0mpo0 7435 . . . . 5 ((𝐵 = ∅ ∨ 𝑉 = ∅) → (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) = ∅)
3331, 32syl 17 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) = ∅)
3426, 33eqtr4d 2771 . . 3 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
3525, 34pm2.61i 182 . 2 (𝑁 matRepV 𝑅) = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))))
361, 35eqtri 2756 1 𝑄 = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282  ifcif 4474  cmpt 5174  cfv 6486  (class class class)co 7352  cmpo 7354  m cmap 8756  Basecbs 17122   Mat cmat 22323   matRepV cmatrepV 22473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-1cn 11071  ax-addcl 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-nn 12133  df-slot 17095  df-ndx 17107  df-base 17123  df-mat 22324  df-marepv 22475
This theorem is referenced by:  marepvval0  22482
  Copyright terms: Public domain W3C validator