MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubfval Structured version   Visualization version   GIF version

Theorem grpsubfval 18966
Description: Group subtraction (division) operation. For a shorter proof using ax-rep 5249, see grpsubfvalALT 18967. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) Remove dependency on ax-rep 5249. (Revised by Rohan Ridenour, 17-Aug-2023.) (Proof shortened by AV, 19-Feb-2024.)
Hypotheses
Ref Expression
grpsubval.b 𝐵 = (Base‘𝐺)
grpsubval.p + = (+g𝐺)
grpsubval.i 𝐼 = (invg𝐺)
grpsubval.m = (-g𝐺)
Assertion
Ref Expression
grpsubfval = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐼,𝑦   𝑥, + ,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem grpsubfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpsubval.m . . 3 = (-g𝐺)
2 fveq2 6876 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 grpsubval.b . . . . . 6 𝐵 = (Base‘𝐺)
42, 3eqtr4di 2788 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
5 fveq2 6876 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
6 grpsubval.p . . . . . . 7 + = (+g𝐺)
75, 6eqtr4di 2788 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
8 eqidd 2736 . . . . . 6 (𝑔 = 𝐺𝑥 = 𝑥)
9 fveq2 6876 . . . . . . . 8 (𝑔 = 𝐺 → (invg𝑔) = (invg𝐺))
10 grpsubval.i . . . . . . . 8 𝐼 = (invg𝐺)
119, 10eqtr4di 2788 . . . . . . 7 (𝑔 = 𝐺 → (invg𝑔) = 𝐼)
1211fveq1d 6878 . . . . . 6 (𝑔 = 𝐺 → ((invg𝑔)‘𝑦) = (𝐼𝑦))
137, 8, 12oveq123d 7426 . . . . 5 (𝑔 = 𝐺 → (𝑥(+g𝑔)((invg𝑔)‘𝑦)) = (𝑥 + (𝐼𝑦)))
144, 4, 13mpoeq123dv 7482 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
15 df-sbg 18921 . . . 4 -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))))
163fvexi 6890 . . . . 5 𝐵 ∈ V
176fvexi 6890 . . . . . . 7 + ∈ V
1817rnex 7906 . . . . . 6 ran + ∈ V
19 p0ex 5354 . . . . . 6 {∅} ∈ V
2018, 19unex 7738 . . . . 5 (ran + ∪ {∅}) ∈ V
21 df-ov 7408 . . . . . . 7 (𝑥 + (𝐼𝑦)) = ( + ‘⟨𝑥, (𝐼𝑦)⟩)
22 fvrn0 6906 . . . . . . 7 ( + ‘⟨𝑥, (𝐼𝑦)⟩) ∈ (ran + ∪ {∅})
2321, 22eqeltri 2830 . . . . . 6 (𝑥 + (𝐼𝑦)) ∈ (ran + ∪ {∅})
2423rgen2w 3056 . . . . 5 𝑥𝐵𝑦𝐵 (𝑥 + (𝐼𝑦)) ∈ (ran + ∪ {∅})
2516, 16, 20, 24mpoexw 8077 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) ∈ V
2614, 15, 25fvmpt 6986 . . 3 (𝐺 ∈ V → (-g𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
271, 26eqtrid 2782 . 2 (𝐺 ∈ V → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
28 fvprc 6868 . . . 4 𝐺 ∈ V → (-g𝐺) = ∅)
291, 28eqtrid 2782 . . 3 𝐺 ∈ V → = ∅)
30 fvprc 6868 . . . . . 6 𝐺 ∈ V → (Base‘𝐺) = ∅)
313, 30eqtrid 2782 . . . . 5 𝐺 ∈ V → 𝐵 = ∅)
3231olcd 874 . . . 4 𝐺 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅))
33 0mpo0 7490 . . . 4 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) = ∅)
3432, 33syl 17 . . 3 𝐺 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) = ∅)
3529, 34eqtr4d 2773 . 2 𝐺 ∈ V → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
3627, 35pm2.61i 182 1 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1540  wcel 2108  Vcvv 3459  cun 3924  c0 4308  {csn 4601  cop 4607  ran crn 5655  cfv 6531  (class class class)co 7405  cmpo 7407  Basecbs 17228  +gcplusg 17271  invgcminusg 18917  -gcsg 18918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-sbg 18921
This theorem is referenced by:  grpsubval  18968  grpsubf  19002  grpsubpropd  19028  grpsubpropd2  19029  tgpsubcn  24028  tngtopn  24589
  Copyright terms: Public domain W3C validator