MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubfval Structured version   Visualization version   GIF version

Theorem grpsubfval 18922
Description: Group subtraction (division) operation. For a shorter proof using ax-rep 5237, see grpsubfvalALT 18923. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) Remove dependency on ax-rep 5237. (Revised by Rohan Ridenour, 17-Aug-2023.) (Proof shortened by AV, 19-Feb-2024.)
Hypotheses
Ref Expression
grpsubval.b 𝐵 = (Base‘𝐺)
grpsubval.p + = (+g𝐺)
grpsubval.i 𝐼 = (invg𝐺)
grpsubval.m = (-g𝐺)
Assertion
Ref Expression
grpsubfval = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐼,𝑦   𝑥, + ,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem grpsubfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpsubval.m . . 3 = (-g𝐺)
2 fveq2 6861 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 grpsubval.b . . . . . 6 𝐵 = (Base‘𝐺)
42, 3eqtr4di 2783 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
5 fveq2 6861 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
6 grpsubval.p . . . . . . 7 + = (+g𝐺)
75, 6eqtr4di 2783 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
8 eqidd 2731 . . . . . 6 (𝑔 = 𝐺𝑥 = 𝑥)
9 fveq2 6861 . . . . . . . 8 (𝑔 = 𝐺 → (invg𝑔) = (invg𝐺))
10 grpsubval.i . . . . . . . 8 𝐼 = (invg𝐺)
119, 10eqtr4di 2783 . . . . . . 7 (𝑔 = 𝐺 → (invg𝑔) = 𝐼)
1211fveq1d 6863 . . . . . 6 (𝑔 = 𝐺 → ((invg𝑔)‘𝑦) = (𝐼𝑦))
137, 8, 12oveq123d 7411 . . . . 5 (𝑔 = 𝐺 → (𝑥(+g𝑔)((invg𝑔)‘𝑦)) = (𝑥 + (𝐼𝑦)))
144, 4, 13mpoeq123dv 7467 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
15 df-sbg 18877 . . . 4 -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))))
163fvexi 6875 . . . . 5 𝐵 ∈ V
176fvexi 6875 . . . . . . 7 + ∈ V
1817rnex 7889 . . . . . 6 ran + ∈ V
19 p0ex 5342 . . . . . 6 {∅} ∈ V
2018, 19unex 7723 . . . . 5 (ran + ∪ {∅}) ∈ V
21 df-ov 7393 . . . . . . 7 (𝑥 + (𝐼𝑦)) = ( + ‘⟨𝑥, (𝐼𝑦)⟩)
22 fvrn0 6891 . . . . . . 7 ( + ‘⟨𝑥, (𝐼𝑦)⟩) ∈ (ran + ∪ {∅})
2321, 22eqeltri 2825 . . . . . 6 (𝑥 + (𝐼𝑦)) ∈ (ran + ∪ {∅})
2423rgen2w 3050 . . . . 5 𝑥𝐵𝑦𝐵 (𝑥 + (𝐼𝑦)) ∈ (ran + ∪ {∅})
2516, 16, 20, 24mpoexw 8060 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) ∈ V
2614, 15, 25fvmpt 6971 . . 3 (𝐺 ∈ V → (-g𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
271, 26eqtrid 2777 . 2 (𝐺 ∈ V → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
28 fvprc 6853 . . . 4 𝐺 ∈ V → (-g𝐺) = ∅)
291, 28eqtrid 2777 . . 3 𝐺 ∈ V → = ∅)
30 fvprc 6853 . . . . . 6 𝐺 ∈ V → (Base‘𝐺) = ∅)
313, 30eqtrid 2777 . . . . 5 𝐺 ∈ V → 𝐵 = ∅)
3231olcd 874 . . . 4 𝐺 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅))
33 0mpo0 7475 . . . 4 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) = ∅)
3432, 33syl 17 . . 3 𝐺 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) = ∅)
3529, 34eqtr4d 2768 . 2 𝐺 ∈ V → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
3627, 35pm2.61i 182 1 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  c0 4299  {csn 4592  cop 4598  ran crn 5642  cfv 6514  (class class class)co 7390  cmpo 7392  Basecbs 17186  +gcplusg 17227  invgcminusg 18873  -gcsg 18874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-sbg 18877
This theorem is referenced by:  grpsubval  18924  grpsubf  18958  grpsubpropd  18984  grpsubpropd2  18985  tgpsubcn  23984  tngtopn  24545
  Copyright terms: Public domain W3C validator