MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubfval Structured version   Visualization version   GIF version

Theorem grpsubfval 18893
Description: Group subtraction (division) operation. For a shorter proof using ax-rep 5217, see grpsubfvalALT 18894. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) Remove dependency on ax-rep 5217. (Revised by Rohan Ridenour, 17-Aug-2023.) (Proof shortened by AV, 19-Feb-2024.)
Hypotheses
Ref Expression
grpsubval.b 𝐵 = (Base‘𝐺)
grpsubval.p + = (+g𝐺)
grpsubval.i 𝐼 = (invg𝐺)
grpsubval.m = (-g𝐺)
Assertion
Ref Expression
grpsubfval = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐼,𝑦   𝑥, + ,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem grpsubfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpsubval.m . . 3 = (-g𝐺)
2 fveq2 6822 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 grpsubval.b . . . . . 6 𝐵 = (Base‘𝐺)
42, 3eqtr4di 2784 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
5 fveq2 6822 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
6 grpsubval.p . . . . . . 7 + = (+g𝐺)
75, 6eqtr4di 2784 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
8 eqidd 2732 . . . . . 6 (𝑔 = 𝐺𝑥 = 𝑥)
9 fveq2 6822 . . . . . . . 8 (𝑔 = 𝐺 → (invg𝑔) = (invg𝐺))
10 grpsubval.i . . . . . . . 8 𝐼 = (invg𝐺)
119, 10eqtr4di 2784 . . . . . . 7 (𝑔 = 𝐺 → (invg𝑔) = 𝐼)
1211fveq1d 6824 . . . . . 6 (𝑔 = 𝐺 → ((invg𝑔)‘𝑦) = (𝐼𝑦))
137, 8, 12oveq123d 7367 . . . . 5 (𝑔 = 𝐺 → (𝑥(+g𝑔)((invg𝑔)‘𝑦)) = (𝑥 + (𝐼𝑦)))
144, 4, 13mpoeq123dv 7421 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
15 df-sbg 18848 . . . 4 -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))))
163fvexi 6836 . . . . 5 𝐵 ∈ V
176fvexi 6836 . . . . . . 7 + ∈ V
1817rnex 7840 . . . . . 6 ran + ∈ V
19 p0ex 5322 . . . . . 6 {∅} ∈ V
2018, 19unex 7677 . . . . 5 (ran + ∪ {∅}) ∈ V
21 df-ov 7349 . . . . . . 7 (𝑥 + (𝐼𝑦)) = ( + ‘⟨𝑥, (𝐼𝑦)⟩)
22 fvrn0 6850 . . . . . . 7 ( + ‘⟨𝑥, (𝐼𝑦)⟩) ∈ (ran + ∪ {∅})
2321, 22eqeltri 2827 . . . . . 6 (𝑥 + (𝐼𝑦)) ∈ (ran + ∪ {∅})
2423rgen2w 3052 . . . . 5 𝑥𝐵𝑦𝐵 (𝑥 + (𝐼𝑦)) ∈ (ran + ∪ {∅})
2516, 16, 20, 24mpoexw 8010 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) ∈ V
2614, 15, 25fvmpt 6929 . . 3 (𝐺 ∈ V → (-g𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
271, 26eqtrid 2778 . 2 (𝐺 ∈ V → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
28 fvprc 6814 . . . 4 𝐺 ∈ V → (-g𝐺) = ∅)
291, 28eqtrid 2778 . . 3 𝐺 ∈ V → = ∅)
30 fvprc 6814 . . . . . 6 𝐺 ∈ V → (Base‘𝐺) = ∅)
313, 30eqtrid 2778 . . . . 5 𝐺 ∈ V → 𝐵 = ∅)
3231olcd 874 . . . 4 𝐺 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅))
33 0mpo0 7429 . . . 4 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) = ∅)
3432, 33syl 17 . . 3 𝐺 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) = ∅)
3529, 34eqtr4d 2769 . 2 𝐺 ∈ V → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
3627, 35pm2.61i 182 1 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  cun 3900  c0 4283  {csn 4576  cop 4582  ran crn 5617  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17117  +gcplusg 17158  invgcminusg 18844  -gcsg 18845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-sbg 18848
This theorem is referenced by:  grpsubval  18895  grpsubf  18929  grpsubpropd  18955  grpsubpropd2  18956  tgpsubcn  24003  tngtopn  24563
  Copyright terms: Public domain W3C validator