MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubfval Structured version   Visualization version   GIF version

Theorem grpsubfval 18942
Description: Group subtraction (division) operation. For a shorter proof using ax-rep 5280, see grpsubfvalALT 18943. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) Remove dependency on ax-rep 5280. (Revised by Rohan Ridenour, 17-Aug-2023.) (Proof shortened by AV, 19-Feb-2024.)
Hypotheses
Ref Expression
grpsubval.b 𝐵 = (Base‘𝐺)
grpsubval.p + = (+g𝐺)
grpsubval.i 𝐼 = (invg𝐺)
grpsubval.m = (-g𝐺)
Assertion
Ref Expression
grpsubfval = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐼,𝑦   𝑥, + ,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem grpsubfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpsubval.m . . 3 = (-g𝐺)
2 fveq2 6891 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 grpsubval.b . . . . . 6 𝐵 = (Base‘𝐺)
42, 3eqtr4di 2783 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
5 fveq2 6891 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
6 grpsubval.p . . . . . . 7 + = (+g𝐺)
75, 6eqtr4di 2783 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
8 eqidd 2726 . . . . . 6 (𝑔 = 𝐺𝑥 = 𝑥)
9 fveq2 6891 . . . . . . . 8 (𝑔 = 𝐺 → (invg𝑔) = (invg𝐺))
10 grpsubval.i . . . . . . . 8 𝐼 = (invg𝐺)
119, 10eqtr4di 2783 . . . . . . 7 (𝑔 = 𝐺 → (invg𝑔) = 𝐼)
1211fveq1d 6893 . . . . . 6 (𝑔 = 𝐺 → ((invg𝑔)‘𝑦) = (𝐼𝑦))
137, 8, 12oveq123d 7436 . . . . 5 (𝑔 = 𝐺 → (𝑥(+g𝑔)((invg𝑔)‘𝑦)) = (𝑥 + (𝐼𝑦)))
144, 4, 13mpoeq123dv 7491 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
15 df-sbg 18897 . . . 4 -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))))
163fvexi 6905 . . . . 5 𝐵 ∈ V
176fvexi 6905 . . . . . . 7 + ∈ V
1817rnex 7914 . . . . . 6 ran + ∈ V
19 p0ex 5378 . . . . . 6 {∅} ∈ V
2018, 19unex 7745 . . . . 5 (ran + ∪ {∅}) ∈ V
21 df-ov 7418 . . . . . . 7 (𝑥 + (𝐼𝑦)) = ( + ‘⟨𝑥, (𝐼𝑦)⟩)
22 fvrn0 6921 . . . . . . 7 ( + ‘⟨𝑥, (𝐼𝑦)⟩) ∈ (ran + ∪ {∅})
2321, 22eqeltri 2821 . . . . . 6 (𝑥 + (𝐼𝑦)) ∈ (ran + ∪ {∅})
2423rgen2w 3056 . . . . 5 𝑥𝐵𝑦𝐵 (𝑥 + (𝐼𝑦)) ∈ (ran + ∪ {∅})
2516, 16, 20, 24mpoexw 8079 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) ∈ V
2614, 15, 25fvmpt 6999 . . 3 (𝐺 ∈ V → (-g𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
271, 26eqtrid 2777 . 2 (𝐺 ∈ V → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
28 fvprc 6883 . . . 4 𝐺 ∈ V → (-g𝐺) = ∅)
291, 28eqtrid 2777 . . 3 𝐺 ∈ V → = ∅)
30 fvprc 6883 . . . . . 6 𝐺 ∈ V → (Base‘𝐺) = ∅)
313, 30eqtrid 2777 . . . . 5 𝐺 ∈ V → 𝐵 = ∅)
3231olcd 872 . . . 4 𝐺 ∈ V → (𝐵 = ∅ ∨ 𝐵 = ∅))
33 0mpo0 7499 . . . 4 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) = ∅)
3432, 33syl 17 . . 3 𝐺 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) = ∅)
3529, 34eqtr4d 2768 . 2 𝐺 ∈ V → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
3627, 35pm2.61i 182 1 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 845   = wceq 1533  wcel 2098  Vcvv 3463  cun 3938  c0 4318  {csn 4624  cop 4630  ran crn 5673  cfv 6542  (class class class)co 7415  cmpo 7417  Basecbs 17177  +gcplusg 17230  invgcminusg 18893  -gcsg 18894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7989  df-2nd 7990  df-sbg 18897
This theorem is referenced by:  grpsubval  18944  grpsubf  18977  grpsubpropd  19003  grpsubpropd2  19004  tgpsubcn  24010  tngtopn  24583
  Copyright terms: Public domain W3C validator