Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoxopx0ov0 | Structured version Visualization version GIF version |
Description: If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is the empty set, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopn0yelv.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) |
Ref | Expression |
---|---|
mpoxopx0ov0 | ⊢ (∅𝐹𝐾) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 5559 | . 2 ⊢ ¬ ∅ ∈ (V × V) | |
2 | mpoxopn0yelv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) | |
3 | 2 | mpoxopxnop0 7912 | . 2 ⊢ (¬ ∅ ∈ (V × V) → (∅𝐹𝐾) = ∅) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (∅𝐹𝐾) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2114 Vcvv 3398 ∅c0 4211 × cxp 5523 ‘cfv 6339 (class class class)co 7172 ∈ cmpo 7174 1st c1st 7714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7481 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fv 6347 df-ov 7175 df-oprab 7176 df-mpo 7177 df-1st 7716 df-2nd 7717 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |