MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopx0ov0 Structured version   Visualization version   GIF version

Theorem mpoxopx0ov0 7913
Description: If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is the empty set, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopn0yelv.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
Assertion
Ref Expression
mpoxopx0ov0 (∅𝐹𝐾) = ∅
Distinct variable groups:   𝑥,𝑦   𝑥,𝐾   𝑥,𝐹
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑦)   𝐾(𝑦)

Proof of Theorem mpoxopx0ov0
StepHypRef Expression
1 0nelxp 5559 . 2 ¬ ∅ ∈ (V × V)
2 mpoxopn0yelv.f . . 3 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
32mpoxopxnop0 7912 . 2 (¬ ∅ ∈ (V × V) → (∅𝐹𝐾) = ∅)
41, 3ax-mp 5 1 (∅𝐹𝐾) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1542  wcel 2114  Vcvv 3398  c0 4211   × cxp 5523  cfv 6339  (class class class)co 7172  cmpo 7174  1st c1st 7714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7481
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fv 6347  df-ov 7175  df-oprab 7176  df-mpo 7177  df-1st 7716  df-2nd 7717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator