Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoxopx0ov0 | Structured version Visualization version GIF version |
Description: If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is the empty set, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopn0yelv.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) |
Ref | Expression |
---|---|
mpoxopx0ov0 | ⊢ (∅𝐹𝐾) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 5613 | . 2 ⊢ ¬ ∅ ∈ (V × V) | |
2 | mpoxopn0yelv.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) | |
3 | 2 | mpoxopxnop0 7999 | . 2 ⊢ (¬ ∅ ∈ (V × V) → (∅𝐹𝐾) = ∅) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (∅𝐹𝐾) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1543 ∈ wcel 2112 Vcvv 3423 ∅c0 4254 × cxp 5577 ‘cfv 6415 (class class class)co 7252 ∈ cmpo 7254 1st c1st 7799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-iota 6373 df-fun 6417 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-1st 7801 df-2nd 7802 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |