MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopx0ov0 Structured version   Visualization version   GIF version

Theorem mpoxopx0ov0 8000
Description: If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is the empty set, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopn0yelv.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
Assertion
Ref Expression
mpoxopx0ov0 (∅𝐹𝐾) = ∅
Distinct variable groups:   𝑥,𝑦   𝑥,𝐾   𝑥,𝐹
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑦)   𝐾(𝑦)

Proof of Theorem mpoxopx0ov0
StepHypRef Expression
1 0nelxp 5613 . 2 ¬ ∅ ∈ (V × V)
2 mpoxopn0yelv.f . . 3 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
32mpoxopxnop0 7999 . 2 (¬ ∅ ∈ (V × V) → (∅𝐹𝐾) = ∅)
41, 3ax-mp 5 1 (∅𝐹𝐾) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1543  wcel 2112  Vcvv 3423  c0 4254   × cxp 5577  cfv 6415  (class class class)co 7252  cmpo 7254  1st c1st 7799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346  ax-un 7563
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-id 5479  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-iota 6373  df-fun 6417  df-fv 6423  df-ov 7255  df-oprab 7256  df-mpo 7257  df-1st 7801  df-2nd 7802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator