Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpets2 Structured version   Visualization version   GIF version

Theorem mpets2 38780
Description: Member Partition-Equivalence Theorem with binary relations, cf. mpet2 38779. (Contributed by Peter Mazsa, 24-Sep-2021.)
Assertion
Ref Expression
mpets2 (𝐴𝑉 → (( E ↾ 𝐴) Parts 𝐴 ↔ ≀ ( E ↾ 𝐴) Ers 𝐴))

Proof of Theorem mpets2
StepHypRef Expression
1 mpet2 38779 . 2 (( E ↾ 𝐴) Part 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
2 cnvepresex 38273 . . . 4 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
3 brpartspart 38712 . . . 4 ((𝐴𝑉 ∧ ( E ↾ 𝐴) ∈ V) → (( E ↾ 𝐴) Parts 𝐴 ↔ ( E ↾ 𝐴) Part 𝐴))
42, 3mpdan 687 . . 3 (𝐴𝑉 → (( E ↾ 𝐴) Parts 𝐴 ↔ ( E ↾ 𝐴) Part 𝐴))
5 1cosscnvepresex 38360 . . . 4 (𝐴𝑉 → ≀ ( E ↾ 𝐴) ∈ V)
6 brerser 38616 . . . 4 ((𝐴𝑉 ∧ ≀ ( E ↾ 𝐴) ∈ V) → ( ≀ ( E ↾ 𝐴) Ers 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴))
75, 6mpdan 687 . . 3 (𝐴𝑉 → ( ≀ ( E ↾ 𝐴) Ers 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴))
84, 7bibi12d 345 . 2 (𝐴𝑉 → ((( E ↾ 𝐴) Parts 𝐴 ↔ ≀ ( E ↾ 𝐴) Ers 𝐴) ↔ (( E ↾ 𝐴) Part 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)))
91, 8mpbiri 258 1 (𝐴𝑉 → (( E ↾ 𝐴) Parts 𝐴 ↔ ≀ ( E ↾ 𝐴) Ers 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2107  Vcvv 3457   class class class wbr 5116   E cep 5549  ccnv 5650  cres 5653  ccoss 38120   Ers cers 38145   ErALTV werALTV 38146   Parts cparts 38158   Part wpart 38159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-id 5545  df-eprel 5550  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-ec 8715  df-qs 8719  df-coss 38350  df-coels 38351  df-rels 38424  df-ssr 38437  df-refs 38449  df-refrels 38450  df-refrel 38451  df-cnvrefs 38464  df-cnvrefrels 38465  df-cnvrefrel 38466  df-syms 38481  df-symrels 38482  df-symrel 38483  df-trs 38511  df-trrels 38512  df-trrel 38513  df-eqvrels 38523  df-eqvrel 38524  df-coeleqvrel 38526  df-dmqss 38577  df-dmqs 38578  df-ers 38602  df-erALTV 38603  df-comember 38605  df-funALTV 38621  df-disjss 38642  df-disjs 38643  df-disjALTV 38644  df-eldisj 38646  df-parts 38704  df-part 38705  df-membpart 38707
This theorem is referenced by:  mpets  38781
  Copyright terms: Public domain W3C validator