Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpets2 | Structured version Visualization version GIF version |
Description: Member Partition-Equivalence Theorem with binary relations, cf. mpet2 37060. (Contributed by Peter Mazsa, 24-Sep-2021.) |
Ref | Expression |
---|---|
mpets2 | ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) Parts 𝐴 ↔ ≀ (◡ E ↾ 𝐴) Ers 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpet2 37060 | . 2 ⊢ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) | |
2 | cnvepresex 36553 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) | |
3 | brpartspart 36993 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (◡ E ↾ 𝐴) ∈ V) → ((◡ E ↾ 𝐴) Parts 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴)) | |
4 | 2, 3 | mpdan 685 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) Parts 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴)) |
5 | 1cosscnvepresex 36641 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ≀ (◡ E ↾ 𝐴) ∈ V) | |
6 | brerser 36897 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ≀ (◡ E ↾ 𝐴) ∈ V) → ( ≀ (◡ E ↾ 𝐴) Ers 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴)) | |
7 | 5, 6 | mpdan 685 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ( ≀ (◡ E ↾ 𝐴) Ers 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴)) |
8 | 4, 7 | bibi12d 346 | . 2 ⊢ (𝐴 ∈ 𝑉 → (((◡ E ↾ 𝐴) Parts 𝐴 ↔ ≀ (◡ E ↾ 𝐴) Ers 𝐴) ↔ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴))) |
9 | 1, 8 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) Parts 𝐴 ↔ ≀ (◡ E ↾ 𝐴) Ers 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2104 Vcvv 3437 class class class wbr 5081 E cep 5505 ◡ccnv 5599 ↾ cres 5602 ≀ ccoss 36387 Ers cers 36412 ErALTV werALTV 36413 Parts cparts 36425 Part wpart 36426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3339 df-rab 3341 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-id 5500 df-eprel 5506 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ec 8531 df-qs 8535 df-coss 36631 df-coels 36632 df-rels 36705 df-ssr 36718 df-refs 36730 df-refrels 36731 df-refrel 36732 df-cnvrefs 36745 df-cnvrefrels 36746 df-cnvrefrel 36747 df-syms 36762 df-symrels 36763 df-symrel 36764 df-trs 36792 df-trrels 36793 df-trrel 36794 df-eqvrels 36804 df-eqvrel 36805 df-coeleqvrel 36807 df-dmqss 36858 df-dmqs 36859 df-ers 36883 df-erALTV 36884 df-comember 36886 df-funALTV 36902 df-disjss 36923 df-disjs 36924 df-disjALTV 36925 df-eldisj 36927 df-parts 36985 df-part 36986 df-membpart 36988 |
This theorem is referenced by: mpets 37062 |
Copyright terms: Public domain | W3C validator |