![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpets2 | Structured version Visualization version GIF version |
Description: Member Partition-Equivalence Theorem with binary relations, cf. mpet2 38214. (Contributed by Peter Mazsa, 24-Sep-2021.) |
Ref | Expression |
---|---|
mpets2 | ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) Parts 𝐴 ↔ ≀ (◡ E ↾ 𝐴) Ers 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpet2 38214 | . 2 ⊢ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) | |
2 | cnvepresex 37707 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) | |
3 | brpartspart 38147 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (◡ E ↾ 𝐴) ∈ V) → ((◡ E ↾ 𝐴) Parts 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴)) | |
4 | 2, 3 | mpdan 684 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) Parts 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴)) |
5 | 1cosscnvepresex 37795 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ≀ (◡ E ↾ 𝐴) ∈ V) | |
6 | brerser 38051 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ≀ (◡ E ↾ 𝐴) ∈ V) → ( ≀ (◡ E ↾ 𝐴) Ers 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴)) | |
7 | 5, 6 | mpdan 684 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ( ≀ (◡ E ↾ 𝐴) Ers 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴)) |
8 | 4, 7 | bibi12d 345 | . 2 ⊢ (𝐴 ∈ 𝑉 → (((◡ E ↾ 𝐴) Parts 𝐴 ↔ ≀ (◡ E ↾ 𝐴) Ers 𝐴) ↔ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴))) |
9 | 1, 8 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) Parts 𝐴 ↔ ≀ (◡ E ↾ 𝐴) Ers 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2098 Vcvv 3466 class class class wbr 5139 E cep 5570 ◡ccnv 5666 ↾ cres 5669 ≀ ccoss 37547 Ers cers 37572 ErALTV werALTV 37573 Parts cparts 37585 Part wpart 37586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-id 5565 df-eprel 5571 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ec 8702 df-qs 8706 df-coss 37785 df-coels 37786 df-rels 37859 df-ssr 37872 df-refs 37884 df-refrels 37885 df-refrel 37886 df-cnvrefs 37899 df-cnvrefrels 37900 df-cnvrefrel 37901 df-syms 37916 df-symrels 37917 df-symrel 37918 df-trs 37946 df-trrels 37947 df-trrel 37948 df-eqvrels 37958 df-eqvrel 37959 df-coeleqvrel 37961 df-dmqss 38012 df-dmqs 38013 df-ers 38037 df-erALTV 38038 df-comember 38040 df-funALTV 38056 df-disjss 38077 df-disjs 38078 df-disjALTV 38079 df-eldisj 38081 df-parts 38139 df-part 38140 df-membpart 38142 |
This theorem is referenced by: mpets 38216 |
Copyright terms: Public domain | W3C validator |