Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpets2 Structured version   Visualization version   GIF version

Theorem mpets2 38784
Description: Member Partition-Equivalence Theorem with binary relations, cf. mpet2 38783. (Contributed by Peter Mazsa, 24-Sep-2021.)
Assertion
Ref Expression
mpets2 (𝐴𝑉 → (( E ↾ 𝐴) Parts 𝐴 ↔ ≀ ( E ↾ 𝐴) Ers 𝐴))

Proof of Theorem mpets2
StepHypRef Expression
1 mpet2 38783 . 2 (( E ↾ 𝐴) Part 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
2 cnvepresex 38277 . . . 4 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
3 brpartspart 38716 . . . 4 ((𝐴𝑉 ∧ ( E ↾ 𝐴) ∈ V) → (( E ↾ 𝐴) Parts 𝐴 ↔ ( E ↾ 𝐴) Part 𝐴))
42, 3mpdan 686 . . 3 (𝐴𝑉 → (( E ↾ 𝐴) Parts 𝐴 ↔ ( E ↾ 𝐴) Part 𝐴))
5 1cosscnvepresex 38364 . . . 4 (𝐴𝑉 → ≀ ( E ↾ 𝐴) ∈ V)
6 brerser 38620 . . . 4 ((𝐴𝑉 ∧ ≀ ( E ↾ 𝐴) ∈ V) → ( ≀ ( E ↾ 𝐴) Ers 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴))
75, 6mpdan 686 . . 3 (𝐴𝑉 → ( ≀ ( E ↾ 𝐴) Ers 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴))
84, 7bibi12d 345 . 2 (𝐴𝑉 → ((( E ↾ 𝐴) Parts 𝐴 ↔ ≀ ( E ↾ 𝐴) Ers 𝐴) ↔ (( E ↾ 𝐴) Part 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)))
91, 8mpbiri 258 1 (𝐴𝑉 → (( E ↾ 𝐴) Parts 𝐴 ↔ ≀ ( E ↾ 𝐴) Ers 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2104  Vcvv 3477   class class class wbr 5149   E cep 5581  ccnv 5682  cres 5685  ccoss 38122   Ers cers 38147   ErALTV werALTV 38148   Parts cparts 38160   Part wpart 38161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5366  ax-pr 5430  ax-un 7747
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3376  df-rab 3433  df-v 3479  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-iun 5000  df-br 5150  df-opab 5212  df-id 5576  df-eprel 5582  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-ec 8740  df-qs 8744  df-coss 38354  df-coels 38355  df-rels 38428  df-ssr 38441  df-refs 38453  df-refrels 38454  df-refrel 38455  df-cnvrefs 38468  df-cnvrefrels 38469  df-cnvrefrel 38470  df-syms 38485  df-symrels 38486  df-symrel 38487  df-trs 38515  df-trrels 38516  df-trrel 38517  df-eqvrels 38527  df-eqvrel 38528  df-coeleqvrel 38530  df-dmqss 38581  df-dmqs 38582  df-ers 38606  df-erALTV 38607  df-comember 38609  df-funALTV 38625  df-disjss 38646  df-disjs 38647  df-disjALTV 38648  df-eldisj 38650  df-parts 38708  df-part 38709  df-membpart 38711
This theorem is referenced by:  mpets  38785
  Copyright terms: Public domain W3C validator