Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpets2 Structured version   Visualization version   GIF version

Theorem mpets2 38820
Description: Member Partition-Equivalence Theorem with binary relations, cf. mpet2 38819. (Contributed by Peter Mazsa, 24-Sep-2021.)
Assertion
Ref Expression
mpets2 (𝐴𝑉 → (( E ↾ 𝐴) Parts 𝐴 ↔ ≀ ( E ↾ 𝐴) Ers 𝐴))

Proof of Theorem mpets2
StepHypRef Expression
1 mpet2 38819 . 2 (( E ↾ 𝐴) Part 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
2 cnvepresex 38313 . . . 4 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
3 brpartspart 38752 . . . 4 ((𝐴𝑉 ∧ ( E ↾ 𝐴) ∈ V) → (( E ↾ 𝐴) Parts 𝐴 ↔ ( E ↾ 𝐴) Part 𝐴))
42, 3mpdan 687 . . 3 (𝐴𝑉 → (( E ↾ 𝐴) Parts 𝐴 ↔ ( E ↾ 𝐴) Part 𝐴))
5 1cosscnvepresex 38400 . . . 4 (𝐴𝑉 → ≀ ( E ↾ 𝐴) ∈ V)
6 brerser 38656 . . . 4 ((𝐴𝑉 ∧ ≀ ( E ↾ 𝐴) ∈ V) → ( ≀ ( E ↾ 𝐴) Ers 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴))
75, 6mpdan 687 . . 3 (𝐴𝑉 → ( ≀ ( E ↾ 𝐴) Ers 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴))
84, 7bibi12d 345 . 2 (𝐴𝑉 → ((( E ↾ 𝐴) Parts 𝐴 ↔ ≀ ( E ↾ 𝐴) Ers 𝐴) ↔ (( E ↾ 𝐴) Part 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)))
91, 8mpbiri 258 1 (𝐴𝑉 → (( E ↾ 𝐴) Parts 𝐴 ↔ ≀ ( E ↾ 𝐴) Ers 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  Vcvv 3479   class class class wbr 5141   E cep 5581  ccnv 5682  cres 5685  ccoss 38160   Ers cers 38185   ErALTV werALTV 38186   Parts cparts 38198   Part wpart 38199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-id 5576  df-eprel 5582  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-ec 8743  df-qs 8747  df-coss 38390  df-coels 38391  df-rels 38464  df-ssr 38477  df-refs 38489  df-refrels 38490  df-refrel 38491  df-cnvrefs 38504  df-cnvrefrels 38505  df-cnvrefrel 38506  df-syms 38521  df-symrels 38522  df-symrel 38523  df-trs 38551  df-trrels 38552  df-trrel 38553  df-eqvrels 38563  df-eqvrel 38564  df-coeleqvrel 38566  df-dmqss 38617  df-dmqs 38618  df-ers 38642  df-erALTV 38643  df-comember 38645  df-funALTV 38661  df-disjss 38682  df-disjs 38683  df-disjALTV 38684  df-eldisj 38686  df-parts 38744  df-part 38745  df-membpart 38747
This theorem is referenced by:  mpets  38821
  Copyright terms: Public domain W3C validator