Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpets2 Structured version   Visualization version   GIF version

Theorem mpets2 38789
Description: Member Partition-Equivalence Theorem with binary relations, cf. mpet2 38788. (Contributed by Peter Mazsa, 24-Sep-2021.)
Assertion
Ref Expression
mpets2 (𝐴𝑉 → (( E ↾ 𝐴) Parts 𝐴 ↔ ≀ ( E ↾ 𝐴) Ers 𝐴))

Proof of Theorem mpets2
StepHypRef Expression
1 mpet2 38788 . 2 (( E ↾ 𝐴) Part 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
2 cnvepresex 38282 . . . 4 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
3 brpartspart 38721 . . . 4 ((𝐴𝑉 ∧ ( E ↾ 𝐴) ∈ V) → (( E ↾ 𝐴) Parts 𝐴 ↔ ( E ↾ 𝐴) Part 𝐴))
42, 3mpdan 686 . . 3 (𝐴𝑉 → (( E ↾ 𝐴) Parts 𝐴 ↔ ( E ↾ 𝐴) Part 𝐴))
5 1cosscnvepresex 38369 . . . 4 (𝐴𝑉 → ≀ ( E ↾ 𝐴) ∈ V)
6 brerser 38625 . . . 4 ((𝐴𝑉 ∧ ≀ ( E ↾ 𝐴) ∈ V) → ( ≀ ( E ↾ 𝐴) Ers 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴))
75, 6mpdan 686 . . 3 (𝐴𝑉 → ( ≀ ( E ↾ 𝐴) Ers 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴))
84, 7bibi12d 345 . 2 (𝐴𝑉 → ((( E ↾ 𝐴) Parts 𝐴 ↔ ≀ ( E ↾ 𝐴) Ers 𝐴) ↔ (( E ↾ 𝐴) Part 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)))
91, 8mpbiri 258 1 (𝐴𝑉 → (( E ↾ 𝐴) Parts 𝐴 ↔ ≀ ( E ↾ 𝐴) Ers 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  Vcvv 3488   class class class wbr 5166   E cep 5598  ccnv 5694  cres 5697  ccoss 38127   Ers cers 38152   ErALTV werALTV 38153   Parts cparts 38165   Part wpart 38166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-id 5593  df-eprel 5599  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-ec 8759  df-qs 8763  df-coss 38359  df-coels 38360  df-rels 38433  df-ssr 38446  df-refs 38458  df-refrels 38459  df-refrel 38460  df-cnvrefs 38473  df-cnvrefrels 38474  df-cnvrefrel 38475  df-syms 38490  df-symrels 38491  df-symrel 38492  df-trs 38520  df-trrels 38521  df-trrel 38522  df-eqvrels 38532  df-eqvrel 38533  df-coeleqvrel 38535  df-dmqss 38586  df-dmqs 38587  df-ers 38611  df-erALTV 38612  df-comember 38614  df-funALTV 38630  df-disjss 38651  df-disjs 38652  df-disjALTV 38653  df-eldisj 38655  df-parts 38713  df-part 38714  df-membpart 38716
This theorem is referenced by:  mpets  38790
  Copyright terms: Public domain W3C validator