| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpets2 | Structured version Visualization version GIF version | ||
| Description: Member Partition-Equivalence Theorem with binary relations, cf. mpet2 38832. (Contributed by Peter Mazsa, 24-Sep-2021.) |
| Ref | Expression |
|---|---|
| mpets2 | ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) Parts 𝐴 ↔ ≀ (◡ E ↾ 𝐴) Ers 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpet2 38832 | . 2 ⊢ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) | |
| 2 | cnvepresex 38318 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) | |
| 3 | brpartspart 38765 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (◡ E ↾ 𝐴) ∈ V) → ((◡ E ↾ 𝐴) Parts 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴)) | |
| 4 | 2, 3 | mpdan 687 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) Parts 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴)) |
| 5 | 1cosscnvepresex 38412 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ≀ (◡ E ↾ 𝐴) ∈ V) | |
| 6 | brerser 38669 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ≀ (◡ E ↾ 𝐴) ∈ V) → ( ≀ (◡ E ↾ 𝐴) Ers 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴)) | |
| 7 | 5, 6 | mpdan 687 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ( ≀ (◡ E ↾ 𝐴) Ers 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴)) |
| 8 | 4, 7 | bibi12d 345 | . 2 ⊢ (𝐴 ∈ 𝑉 → (((◡ E ↾ 𝐴) Parts 𝐴 ↔ ≀ (◡ E ↾ 𝐴) Ers 𝐴) ↔ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴))) |
| 9 | 1, 8 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) Parts 𝐴 ↔ ≀ (◡ E ↾ 𝐴) Ers 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 E cep 5537 ◡ccnv 5637 ↾ cres 5640 ≀ ccoss 38169 Ers cers 38194 ErALTV werALTV 38195 Parts cparts 38207 Part wpart 38208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-id 5533 df-eprel 5538 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 df-qs 8677 df-coss 38402 df-coels 38403 df-rels 38476 df-ssr 38489 df-refs 38501 df-refrels 38502 df-refrel 38503 df-cnvrefs 38516 df-cnvrefrels 38517 df-cnvrefrel 38518 df-syms 38533 df-symrels 38534 df-symrel 38535 df-trs 38563 df-trrels 38564 df-trrel 38565 df-eqvrels 38575 df-eqvrel 38576 df-coeleqvrel 38578 df-dmqss 38629 df-dmqs 38630 df-ers 38655 df-erALTV 38656 df-comember 38658 df-funALTV 38674 df-disjss 38695 df-disjs 38696 df-disjALTV 38697 df-eldisj 38699 df-parts 38757 df-part 38758 df-membpart 38760 |
| This theorem is referenced by: mpets 38834 |
| Copyright terms: Public domain | W3C validator |