![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpets2 | Structured version Visualization version GIF version |
Description: Member Partition-Equivalence Theorem with binary relations, cf. mpet2 38551. (Contributed by Peter Mazsa, 24-Sep-2021.) |
Ref | Expression |
---|---|
mpets2 | ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) Parts 𝐴 ↔ ≀ (◡ E ↾ 𝐴) Ers 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpet2 38551 | . 2 ⊢ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) | |
2 | cnvepresex 38045 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) | |
3 | brpartspart 38484 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (◡ E ↾ 𝐴) ∈ V) → ((◡ E ↾ 𝐴) Parts 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴)) | |
4 | 2, 3 | mpdan 685 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) Parts 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴)) |
5 | 1cosscnvepresex 38132 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ≀ (◡ E ↾ 𝐴) ∈ V) | |
6 | brerser 38388 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ≀ (◡ E ↾ 𝐴) ∈ V) → ( ≀ (◡ E ↾ 𝐴) Ers 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴)) | |
7 | 5, 6 | mpdan 685 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ( ≀ (◡ E ↾ 𝐴) Ers 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴)) |
8 | 4, 7 | bibi12d 344 | . 2 ⊢ (𝐴 ∈ 𝑉 → (((◡ E ↾ 𝐴) Parts 𝐴 ↔ ≀ (◡ E ↾ 𝐴) Ers 𝐴) ↔ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴))) |
9 | 1, 8 | mpbiri 257 | 1 ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) Parts 𝐴 ↔ ≀ (◡ E ↾ 𝐴) Ers 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2099 Vcvv 3462 class class class wbr 5145 E cep 5577 ◡ccnv 5673 ↾ cres 5676 ≀ ccoss 37889 Ers cers 37914 ErALTV werALTV 37915 Parts cparts 37927 Part wpart 37928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-id 5572 df-eprel 5578 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-ec 8728 df-qs 8732 df-coss 38122 df-coels 38123 df-rels 38196 df-ssr 38209 df-refs 38221 df-refrels 38222 df-refrel 38223 df-cnvrefs 38236 df-cnvrefrels 38237 df-cnvrefrel 38238 df-syms 38253 df-symrels 38254 df-symrel 38255 df-trs 38283 df-trrels 38284 df-trrel 38285 df-eqvrels 38295 df-eqvrel 38296 df-coeleqvrel 38298 df-dmqss 38349 df-dmqs 38350 df-ers 38374 df-erALTV 38375 df-comember 38377 df-funALTV 38393 df-disjss 38414 df-disjs 38415 df-disjALTV 38416 df-eldisj 38418 df-parts 38476 df-part 38477 df-membpart 38479 |
This theorem is referenced by: mpets 38553 |
Copyright terms: Public domain | W3C validator |