| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > edgval | Structured version Visualization version GIF version | ||
| Description: The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| edgval | ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . . 4 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
| 2 | 1 | rneqd 5905 | . . 3 ⊢ (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
| 3 | df-edg 28982 | . . 3 ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | |
| 4 | fvex 6874 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
| 5 | 4 | rnex 7889 | . . 3 ⊢ ran (iEdg‘𝐺) ∈ V |
| 6 | 2, 3, 5 | fvmpt 6971 | . 2 ⊢ (𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 7 | rn0 5892 | . . . 4 ⊢ ran ∅ = ∅ | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran ∅ = ∅) |
| 9 | fvprc 6853 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
| 10 | 9 | rneqd 5905 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran (iEdg‘𝐺) = ran ∅) |
| 11 | fvprc 6853 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ∅) | |
| 12 | 8, 10, 11 | 3eqtr4rd 2776 | . 2 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 13 | 6, 12 | pm2.61i 182 | 1 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 ran crn 5642 ‘cfv 6514 iEdgciedg 28931 Edgcedg 28981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-edg 28982 |
| This theorem is referenced by: iedgedg 28984 edgopval 28985 edgstruct 28987 edgiedgb 28988 edg0iedg0 28989 uhgredgn0 29062 upgredgss 29066 umgredgss 29067 edgupgr 29068 uhgrvtxedgiedgb 29070 upgredg 29071 usgredgss 29093 ausgrumgri 29101 ausgrusgri 29102 uspgrf1oedg 29107 uspgrupgrushgr 29113 usgrumgruspgr 29116 usgruspgrb 29117 usgrf1oedg 29141 uhgr2edg 29142 usgrsizedg 29149 usgredg3 29150 ushgredgedg 29163 ushgredgedgloop 29165 usgr1e 29179 edg0usgr 29187 usgr1v0edg 29191 usgrexmpledg 29196 subgrprop3 29210 0grsubgr 29212 0uhgrsubgr 29213 subgruhgredgd 29218 uhgrspansubgrlem 29224 uhgrspan1 29237 upgrres1 29247 usgredgffibi 29258 dfnbgr3 29272 nbupgrres 29298 usgrnbcnvfv 29299 cplgrop 29371 cusgrexi 29377 structtocusgr 29380 cusgrsize 29389 1loopgredg 29436 1egrvtxdg0 29446 umgr2v2eedg 29459 edginwlk 29570 wlkl1loop 29573 wlkvtxedg 29579 uspgr2wlkeq 29581 wlkiswwlks1 29804 wlkiswwlks2lem4 29809 wlkiswwlks2lem5 29810 wlkiswwlks2 29812 wlkiswwlksupgr2 29814 2pthon3v 29880 umgrwwlks2on 29894 clwlkclwwlk 29938 lfuhgr 35112 loop1cycl 35131 dfclnbgr3 47831 isubgredgss 47869 isubgredg 47870 isuspgrim0lem 47897 upgrimtrlslem2 47909 gricushgr 47921 ushggricedg 47931 stgredg 47959 usgrexmpl1edg 48019 usgrexmpl2edg 48024 gpgedg 48040 |
| Copyright terms: Public domain | W3C validator |