![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > edgval | Structured version Visualization version GIF version |
Description: The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
Ref | Expression |
---|---|
edgval | ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6906 | . . . 4 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
2 | 1 | rneqd 5951 | . . 3 ⊢ (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
3 | df-edg 29079 | . . 3 ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | |
4 | fvex 6919 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
5 | 4 | rnex 7932 | . . 3 ⊢ ran (iEdg‘𝐺) ∈ V |
6 | 2, 3, 5 | fvmpt 7015 | . 2 ⊢ (𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
7 | rn0 5938 | . . . 4 ⊢ ran ∅ = ∅ | |
8 | 7 | a1i 11 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran ∅ = ∅) |
9 | fvprc 6898 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
10 | 9 | rneqd 5951 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran (iEdg‘𝐺) = ran ∅) |
11 | fvprc 6898 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ∅) | |
12 | 8, 10, 11 | 3eqtr4rd 2785 | . 2 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
13 | 6, 12 | pm2.61i 182 | 1 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∅c0 4338 ran crn 5689 ‘cfv 6562 iEdgciedg 29028 Edgcedg 29078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fv 6570 df-edg 29079 |
This theorem is referenced by: iedgedg 29081 edgopval 29082 edgstruct 29084 edgiedgb 29085 edg0iedg0 29086 uhgredgn0 29159 upgredgss 29163 umgredgss 29164 edgupgr 29165 uhgrvtxedgiedgb 29167 upgredg 29168 usgredgss 29190 ausgrumgri 29198 ausgrusgri 29199 uspgrf1oedg 29204 uspgrupgrushgr 29210 usgrumgruspgr 29213 usgruspgrb 29214 usgrf1oedg 29238 uhgr2edg 29239 usgrsizedg 29246 usgredg3 29247 ushgredgedg 29260 ushgredgedgloop 29262 usgr1e 29276 edg0usgr 29284 usgr1v0edg 29288 usgrexmpledg 29293 subgrprop3 29307 0grsubgr 29309 0uhgrsubgr 29310 subgruhgredgd 29315 uhgrspansubgrlem 29321 uhgrspan1 29334 upgrres1 29344 usgredgffibi 29355 dfnbgr3 29369 nbupgrres 29395 usgrnbcnvfv 29396 cplgrop 29468 cusgrexi 29474 structtocusgr 29477 cusgrsize 29486 1loopgredg 29533 1egrvtxdg0 29543 umgr2v2eedg 29556 edginwlk 29667 wlkl1loop 29670 wlkvtxedg 29676 uspgr2wlkeq 29678 wlkiswwlks1 29896 wlkiswwlks2lem4 29901 wlkiswwlks2lem5 29902 wlkiswwlks2 29904 wlkiswwlksupgr2 29906 2pthon3v 29972 umgrwwlks2on 29986 clwlkclwwlk 30030 lfuhgr 35101 loop1cycl 35121 dfclnbgr3 47750 isubgredgss 47788 isubgredg 47789 isuspgrim0lem 47808 gricushgr 47823 ushggricedg 47833 stgredg 47858 usgrexmpl1edg 47918 usgrexmpl2edg 47923 gpgedg 47939 |
Copyright terms: Public domain | W3C validator |