Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > edgval | Structured version Visualization version GIF version |
Description: The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
Ref | Expression |
---|---|
edgval | ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6804 | . . . 4 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
2 | 1 | rneqd 5859 | . . 3 ⊢ (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
3 | df-edg 27516 | . . 3 ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | |
4 | fvex 6817 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
5 | 4 | rnex 7795 | . . 3 ⊢ ran (iEdg‘𝐺) ∈ V |
6 | 2, 3, 5 | fvmpt 6907 | . 2 ⊢ (𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
7 | rn0 5847 | . . . 4 ⊢ ran ∅ = ∅ | |
8 | 7 | a1i 11 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran ∅ = ∅) |
9 | fvprc 6796 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
10 | 9 | rneqd 5859 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran (iEdg‘𝐺) = ran ∅) |
11 | fvprc 6796 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ∅) | |
12 | 8, 10, 11 | 3eqtr4rd 2786 | . 2 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
13 | 6, 12 | pm2.61i 182 | 1 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1538 ∈ wcel 2103 Vcvv 3436 ∅c0 4261 ran crn 5601 ‘cfv 6458 iEdgciedg 27465 Edgcedg 27515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-10 2134 ax-11 2151 ax-12 2168 ax-ext 2706 ax-sep 5231 ax-nul 5238 ax-pr 5360 ax-un 7621 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2713 df-cleq 2727 df-clel 2813 df-nfc 2885 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3357 df-v 3438 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4844 df-br 5081 df-opab 5143 df-mpt 5164 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-iota 6410 df-fun 6460 df-fv 6466 df-edg 27516 |
This theorem is referenced by: iedgedg 27518 edgopval 27519 edgstruct 27521 edgiedgb 27522 edg0iedg0 27523 uhgredgn0 27596 upgredgss 27600 umgredgss 27601 edgupgr 27602 uhgrvtxedgiedgb 27604 upgredg 27605 usgredgss 27627 ausgrumgri 27635 ausgrusgri 27636 uspgrf1oedg 27641 uspgrupgrushgr 27645 usgrumgruspgr 27648 usgruspgrb 27649 usgrf1oedg 27672 uhgr2edg 27673 usgrsizedg 27680 usgredg3 27681 ushgredgedg 27694 ushgredgedgloop 27696 usgr1e 27710 edg0usgr 27718 usgr1v0edg 27722 usgrexmpledg 27727 subgrprop3 27741 0grsubgr 27743 0uhgrsubgr 27744 subgruhgredgd 27749 uhgrspansubgrlem 27755 uhgrspan1 27768 upgrres1 27778 usgredgffibi 27789 dfnbgr3 27803 nbupgrres 27829 usgrnbcnvfv 27830 cplgrop 27902 cusgrexi 27908 structtocusgr 27911 cusgrsize 27919 1loopgredg 27966 1egrvtxdg0 27976 umgr2v2eedg 27989 edginwlk 28100 wlkl1loop 28103 wlkvtxedg 28109 uspgr2wlkeq 28111 wlkiswwlks1 28330 wlkiswwlks2lem4 28335 wlkiswwlks2lem5 28336 wlkiswwlks2 28338 wlkiswwlksupgr2 28340 2pthon3v 28406 umgrwwlks2on 28420 clwlkclwwlk 28464 lfuhgr 33175 loop1cycl 33195 isomushgr 45535 ushrisomgr 45550 |
Copyright terms: Public domain | W3C validator |