| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > edgval | Structured version Visualization version GIF version | ||
| Description: The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| edgval | ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6826 | . . . 4 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
| 2 | 1 | rneqd 5884 | . . 3 ⊢ (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
| 3 | df-edg 29011 | . . 3 ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | |
| 4 | fvex 6839 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
| 5 | 4 | rnex 7850 | . . 3 ⊢ ran (iEdg‘𝐺) ∈ V |
| 6 | 2, 3, 5 | fvmpt 6934 | . 2 ⊢ (𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 7 | rn0 5872 | . . . 4 ⊢ ran ∅ = ∅ | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran ∅ = ∅) |
| 9 | fvprc 6818 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
| 10 | 9 | rneqd 5884 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran (iEdg‘𝐺) = ran ∅) |
| 11 | fvprc 6818 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ∅) | |
| 12 | 8, 10, 11 | 3eqtr4rd 2775 | . 2 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 13 | 6, 12 | pm2.61i 182 | 1 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 ran crn 5624 ‘cfv 6486 iEdgciedg 28960 Edgcedg 29010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fv 6494 df-edg 29011 |
| This theorem is referenced by: iedgedg 29013 edgopval 29014 edgstruct 29016 edgiedgb 29017 edg0iedg0 29018 uhgredgn0 29091 upgredgss 29095 umgredgss 29096 edgupgr 29097 uhgrvtxedgiedgb 29099 upgredg 29100 usgredgss 29122 ausgrumgri 29130 ausgrusgri 29131 uspgrf1oedg 29136 uspgrupgrushgr 29142 usgrumgruspgr 29145 usgruspgrb 29146 usgrf1oedg 29170 uhgr2edg 29171 usgrsizedg 29178 usgredg3 29179 ushgredgedg 29192 ushgredgedgloop 29194 usgr1e 29208 edg0usgr 29216 usgr1v0edg 29220 usgrexmpledg 29225 subgrprop3 29239 0grsubgr 29241 0uhgrsubgr 29242 subgruhgredgd 29247 uhgrspansubgrlem 29253 uhgrspan1 29266 upgrres1 29276 usgredgffibi 29287 dfnbgr3 29301 nbupgrres 29327 usgrnbcnvfv 29328 cplgrop 29400 cusgrexi 29406 structtocusgr 29409 cusgrsize 29418 1loopgredg 29465 1egrvtxdg0 29475 umgr2v2eedg 29488 edginwlk 29598 wlkl1loop 29601 wlkvtxedg 29607 uspgr2wlkeq 29609 wlkiswwlks1 29830 wlkiswwlks2lem4 29835 wlkiswwlks2lem5 29836 wlkiswwlks2 29838 wlkiswwlksupgr2 29840 2pthon3v 29906 umgrwwlks2on 29920 clwlkclwwlk 29964 lfuhgr 35090 loop1cycl 35109 dfclnbgr3 47811 isubgredgss 47850 isubgredg 47851 isuspgrim0lem 47878 upgrimtrlslem2 47890 gricushgr 47902 ushggricedg 47912 stgredg 47941 usgrexmpl1edg 48009 usgrexmpl2edg 48014 gpgedg 48030 |
| Copyright terms: Public domain | W3C validator |