Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > edgval | Structured version Visualization version GIF version |
Description: The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
Ref | Expression |
---|---|
edgval | ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . 4 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
2 | 1 | rneqd 5847 | . . 3 ⊢ (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
3 | df-edg 27418 | . . 3 ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | |
4 | fvex 6787 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
5 | 4 | rnex 7759 | . . 3 ⊢ ran (iEdg‘𝐺) ∈ V |
6 | 2, 3, 5 | fvmpt 6875 | . 2 ⊢ (𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
7 | rn0 5835 | . . . 4 ⊢ ran ∅ = ∅ | |
8 | 7 | a1i 11 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran ∅ = ∅) |
9 | fvprc 6766 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
10 | 9 | rneqd 5847 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran (iEdg‘𝐺) = ran ∅) |
11 | fvprc 6766 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ∅) | |
12 | 8, 10, 11 | 3eqtr4rd 2789 | . 2 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
13 | 6, 12 | pm2.61i 182 | 1 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ran crn 5590 ‘cfv 6433 iEdgciedg 27367 Edgcedg 27417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-edg 27418 |
This theorem is referenced by: iedgedg 27420 edgopval 27421 edgstruct 27423 edgiedgb 27424 edg0iedg0 27425 uhgredgn0 27498 upgredgss 27502 umgredgss 27503 edgupgr 27504 uhgrvtxedgiedgb 27506 upgredg 27507 usgredgss 27529 ausgrumgri 27537 ausgrusgri 27538 uspgrf1oedg 27543 uspgrupgrushgr 27547 usgrumgruspgr 27550 usgruspgrb 27551 usgrf1oedg 27574 uhgr2edg 27575 usgrsizedg 27582 usgredg3 27583 ushgredgedg 27596 ushgredgedgloop 27598 usgr1e 27612 edg0usgr 27620 usgr1v0edg 27624 usgrexmpledg 27629 subgrprop3 27643 0grsubgr 27645 0uhgrsubgr 27646 subgruhgredgd 27651 uhgrspansubgrlem 27657 uhgrspan1 27670 upgrres1 27680 usgredgffibi 27691 dfnbgr3 27705 nbupgrres 27731 usgrnbcnvfv 27732 cplgrop 27804 cusgrexi 27810 structtocusgr 27813 cusgrsize 27821 1loopgredg 27868 1egrvtxdg0 27878 umgr2v2eedg 27891 edginwlk 28002 wlkl1loop 28005 wlkvtxedg 28011 uspgr2wlkeq 28013 wlkiswwlks1 28232 wlkiswwlks2lem4 28237 wlkiswwlks2lem5 28238 wlkiswwlks2 28240 wlkiswwlksupgr2 28242 2pthon3v 28308 umgrwwlks2on 28322 clwlkclwwlk 28366 lfuhgr 33079 loop1cycl 33099 isomushgr 45278 ushrisomgr 45293 |
Copyright terms: Public domain | W3C validator |