![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > edgval | Structured version Visualization version GIF version |
Description: The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
Ref | Expression |
---|---|
edgval | ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6493 | . . . 4 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
2 | 1 | rneqd 5644 | . . 3 ⊢ (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
3 | df-edg 26526 | . . 3 ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | |
4 | fvex 6506 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
5 | 4 | rnex 7426 | . . 3 ⊢ ran (iEdg‘𝐺) ∈ V |
6 | 2, 3, 5 | fvmpt 6589 | . 2 ⊢ (𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
7 | rn0 5669 | . . . 4 ⊢ ran ∅ = ∅ | |
8 | 7 | a1i 11 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran ∅ = ∅) |
9 | fvprc 6486 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
10 | 9 | rneqd 5644 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran (iEdg‘𝐺) = ran ∅) |
11 | fvprc 6486 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ∅) | |
12 | 8, 10, 11 | 3eqtr4rd 2819 | . 2 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
13 | 6, 12 | pm2.61i 177 | 1 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1507 ∈ wcel 2048 Vcvv 3409 ∅c0 4173 ran crn 5401 ‘cfv 6182 iEdgciedg 26475 Edgcedg 26525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-iota 6146 df-fun 6184 df-fv 6190 df-edg 26526 |
This theorem is referenced by: iedgedg 26528 edgopval 26529 edgstruct 26531 edgiedgb 26532 edg0iedg0 26533 uhgredgn0 26606 upgredgss 26610 umgredgss 26611 edgupgr 26612 uhgrvtxedgiedgb 26614 upgredg 26615 usgredgss 26637 ausgrumgri 26645 ausgrusgri 26646 uspgrf1oedg 26651 uspgrupgrushgr 26655 usgrumgruspgr 26658 usgruspgrb 26659 usgrf1oedg 26682 uhgr2edg 26683 usgrsizedg 26690 usgredg3 26691 ushgredgedg 26704 ushgredgedgloop 26706 usgr1e 26720 edg0usgr 26728 usgr1v0edg 26732 usgrexmpledg 26737 subgrprop3 26751 0grsubgr 26753 0uhgrsubgr 26754 subgruhgredgd 26759 uhgrspansubgrlem 26765 uhgrspan1 26778 upgrres1 26788 usgredgffibi 26799 dfnbgr3 26813 nbupgrres 26839 usgrnbcnvfv 26840 cplgrop 26912 cusgrexi 26918 structtocusgr 26921 cusgrsize 26929 1loopgredg 26976 1egrvtxdg0 26986 umgr2v2eedg 26999 edginwlk 27109 wlkl1loop 27112 wlkvtxedg 27118 uspgr2wlkeq 27120 wlkiswwlks1 27343 wlkiswwlks2lem4 27348 wlkiswwlks2lem5 27349 wlkiswwlks2 27351 wlkiswwlksupgr2 27353 2pthon3v 27439 umgrwwlks2on 27453 clwlkclwwlk 27498 clwlkclwwlkOLD 27499 isomushgr 43299 ushrisomgr 43314 |
Copyright terms: Public domain | W3C validator |