| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > edgval | Structured version Visualization version GIF version | ||
| Description: The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| edgval | ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . 4 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
| 2 | 1 | rneqd 5878 | . . 3 ⊢ (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
| 3 | df-edg 29024 | . . 3 ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | |
| 4 | fvex 6835 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
| 5 | 4 | rnex 7840 | . . 3 ⊢ ran (iEdg‘𝐺) ∈ V |
| 6 | 2, 3, 5 | fvmpt 6929 | . 2 ⊢ (𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 7 | rn0 5866 | . . . 4 ⊢ ran ∅ = ∅ | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran ∅ = ∅) |
| 9 | fvprc 6814 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
| 10 | 9 | rneqd 5878 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran (iEdg‘𝐺) = ran ∅) |
| 11 | fvprc 6814 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ∅) | |
| 12 | 8, 10, 11 | 3eqtr4rd 2777 | . 2 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 13 | 6, 12 | pm2.61i 182 | 1 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 ran crn 5617 ‘cfv 6481 iEdgciedg 28973 Edgcedg 29023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-edg 29024 |
| This theorem is referenced by: iedgedg 29026 edgopval 29027 edgstruct 29029 edgiedgb 29030 edg0iedg0 29031 uhgredgn0 29104 upgredgss 29108 umgredgss 29109 edgupgr 29110 uhgrvtxedgiedgb 29112 upgredg 29113 usgredgss 29135 ausgrumgri 29143 ausgrusgri 29144 uspgrf1oedg 29149 uspgrupgrushgr 29155 usgrumgruspgr 29158 usgruspgrb 29159 usgrf1oedg 29183 uhgr2edg 29184 usgrsizedg 29191 usgredg3 29192 ushgredgedg 29205 ushgredgedgloop 29207 usgr1e 29221 edg0usgr 29229 usgr1v0edg 29233 usgrexmpledg 29238 subgrprop3 29252 0grsubgr 29254 0uhgrsubgr 29255 subgruhgredgd 29260 uhgrspansubgrlem 29266 uhgrspan1 29279 upgrres1 29289 usgredgffibi 29300 dfnbgr3 29314 nbupgrres 29340 usgrnbcnvfv 29341 cplgrop 29413 cusgrexi 29419 structtocusgr 29422 cusgrsize 29431 1loopgredg 29478 1egrvtxdg0 29488 umgr2v2eedg 29501 edginwlk 29611 wlkl1loop 29614 wlkvtxedg 29620 uspgr2wlkeq 29622 wlkiswwlks1 29843 wlkiswwlks2lem4 29848 wlkiswwlks2lem5 29849 wlkiswwlks2 29851 wlkiswwlksupgr2 29853 2pthon3v 29919 umgrwwlks2on 29933 clwlkclwwlk 29977 lfuhgr 35150 loop1cycl 35169 dfclnbgr3 47856 isubgredgss 47895 isubgredg 47896 isuspgrim0lem 47923 upgrimtrlslem2 47935 gricushgr 47947 ushggricedg 47957 stgredg 47986 usgrexmpl1edg 48054 usgrexmpl2edg 48059 gpgedg 48075 |
| Copyright terms: Public domain | W3C validator |