| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > edgval | Structured version Visualization version GIF version | ||
| Description: The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| edgval | ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6828 | . . . 4 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
| 2 | 1 | rneqd 5882 | . . 3 ⊢ (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
| 3 | df-edg 29028 | . . 3 ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | |
| 4 | fvex 6841 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
| 5 | 4 | rnex 7846 | . . 3 ⊢ ran (iEdg‘𝐺) ∈ V |
| 6 | 2, 3, 5 | fvmpt 6935 | . 2 ⊢ (𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 7 | rn0 5870 | . . . 4 ⊢ ran ∅ = ∅ | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran ∅ = ∅) |
| 9 | fvprc 6820 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
| 10 | 9 | rneqd 5882 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran (iEdg‘𝐺) = ran ∅) |
| 11 | fvprc 6820 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ∅) | |
| 12 | 8, 10, 11 | 3eqtr4rd 2779 | . 2 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 13 | 6, 12 | pm2.61i 182 | 1 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 ran crn 5620 ‘cfv 6486 iEdgciedg 28977 Edgcedg 29027 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fv 6494 df-edg 29028 |
| This theorem is referenced by: iedgedg 29030 edgopval 29031 edgstruct 29033 edgiedgb 29034 edg0iedg0 29035 uhgredgn0 29108 upgredgss 29112 umgredgss 29113 edgupgr 29114 uhgrvtxedgiedgb 29116 upgredg 29117 usgredgss 29139 ausgrumgri 29147 ausgrusgri 29148 uspgrf1oedg 29153 uspgrupgrushgr 29159 usgrumgruspgr 29162 usgruspgrb 29163 usgrf1oedg 29187 uhgr2edg 29188 usgrsizedg 29195 usgredg3 29196 ushgredgedg 29209 ushgredgedgloop 29211 usgr1e 29225 edg0usgr 29233 usgr1v0edg 29237 usgrexmpledg 29242 subgrprop3 29256 0grsubgr 29258 0uhgrsubgr 29259 subgruhgredgd 29264 uhgrspansubgrlem 29270 uhgrspan1 29283 upgrres1 29293 usgredgffibi 29304 dfnbgr3 29318 nbupgrres 29344 usgrnbcnvfv 29345 cplgrop 29417 cusgrexi 29423 structtocusgr 29426 cusgrsize 29435 1loopgredg 29482 1egrvtxdg0 29492 umgr2v2eedg 29505 edginwlk 29615 wlkl1loop 29618 wlkvtxedg 29624 uspgr2wlkeq 29626 wlkiswwlks1 29847 wlkiswwlks2lem4 29852 wlkiswwlks2lem5 29853 wlkiswwlks2 29855 wlkiswwlksupgr2 29857 2pthon3v 29923 usgrwwlks2on 29938 umgrwwlks2on 29939 clwlkclwwlk 29984 lfuhgr 35183 loop1cycl 35202 dfclnbgr3 47950 isubgredgss 47989 isubgredg 47990 isuspgrim0lem 48017 upgrimtrlslem2 48029 gricushgr 48041 ushggricedg 48051 stgredg 48080 usgrexmpl1edg 48148 usgrexmpl2edg 48153 gpgedg 48169 |
| Copyright terms: Public domain | W3C validator |