| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > edgval | Structured version Visualization version GIF version | ||
| Description: The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| edgval | ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . 4 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
| 2 | 1 | rneqd 5902 | . . 3 ⊢ (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
| 3 | df-edg 28975 | . . 3 ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | |
| 4 | fvex 6871 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
| 5 | 4 | rnex 7886 | . . 3 ⊢ ran (iEdg‘𝐺) ∈ V |
| 6 | 2, 3, 5 | fvmpt 6968 | . 2 ⊢ (𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 7 | rn0 5889 | . . . 4 ⊢ ran ∅ = ∅ | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran ∅ = ∅) |
| 9 | fvprc 6850 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
| 10 | 9 | rneqd 5902 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran (iEdg‘𝐺) = ran ∅) |
| 11 | fvprc 6850 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ∅) | |
| 12 | 8, 10, 11 | 3eqtr4rd 2775 | . 2 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 13 | 6, 12 | pm2.61i 182 | 1 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ran crn 5639 ‘cfv 6511 iEdgciedg 28924 Edgcedg 28974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-edg 28975 |
| This theorem is referenced by: iedgedg 28977 edgopval 28978 edgstruct 28980 edgiedgb 28981 edg0iedg0 28982 uhgredgn0 29055 upgredgss 29059 umgredgss 29060 edgupgr 29061 uhgrvtxedgiedgb 29063 upgredg 29064 usgredgss 29086 ausgrumgri 29094 ausgrusgri 29095 uspgrf1oedg 29100 uspgrupgrushgr 29106 usgrumgruspgr 29109 usgruspgrb 29110 usgrf1oedg 29134 uhgr2edg 29135 usgrsizedg 29142 usgredg3 29143 ushgredgedg 29156 ushgredgedgloop 29158 usgr1e 29172 edg0usgr 29180 usgr1v0edg 29184 usgrexmpledg 29189 subgrprop3 29203 0grsubgr 29205 0uhgrsubgr 29206 subgruhgredgd 29211 uhgrspansubgrlem 29217 uhgrspan1 29230 upgrres1 29240 usgredgffibi 29251 dfnbgr3 29265 nbupgrres 29291 usgrnbcnvfv 29292 cplgrop 29364 cusgrexi 29370 structtocusgr 29373 cusgrsize 29382 1loopgredg 29429 1egrvtxdg0 29439 umgr2v2eedg 29452 edginwlk 29563 wlkl1loop 29566 wlkvtxedg 29572 uspgr2wlkeq 29574 wlkiswwlks1 29797 wlkiswwlks2lem4 29802 wlkiswwlks2lem5 29803 wlkiswwlks2 29805 wlkiswwlksupgr2 29807 2pthon3v 29873 umgrwwlks2on 29887 clwlkclwwlk 29931 lfuhgr 35105 loop1cycl 35124 dfclnbgr3 47827 isubgredgss 47865 isubgredg 47866 isuspgrim0lem 47893 upgrimtrlslem2 47905 gricushgr 47917 ushggricedg 47927 stgredg 47955 usgrexmpl1edg 48015 usgrexmpl2edg 48020 gpgedg 48036 |
| Copyright terms: Public domain | W3C validator |