![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > edgval | Structured version Visualization version GIF version |
Description: The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
Ref | Expression |
---|---|
edgval | ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . . 4 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
2 | 1 | rneqd 5938 | . . 3 ⊢ (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
3 | df-edg 28573 | . . 3 ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | |
4 | fvex 6905 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
5 | 4 | rnex 7907 | . . 3 ⊢ ran (iEdg‘𝐺) ∈ V |
6 | 2, 3, 5 | fvmpt 6999 | . 2 ⊢ (𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
7 | rn0 5926 | . . . 4 ⊢ ran ∅ = ∅ | |
8 | 7 | a1i 11 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran ∅ = ∅) |
9 | fvprc 6884 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
10 | 9 | rneqd 5938 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran (iEdg‘𝐺) = ran ∅) |
11 | fvprc 6884 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ∅) | |
12 | 8, 10, 11 | 3eqtr4rd 2781 | . 2 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
13 | 6, 12 | pm2.61i 182 | 1 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ∅c0 4323 ran crn 5678 ‘cfv 6544 iEdgciedg 28522 Edgcedg 28572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-edg 28573 |
This theorem is referenced by: iedgedg 28575 edgopval 28576 edgstruct 28578 edgiedgb 28579 edg0iedg0 28580 uhgredgn0 28653 upgredgss 28657 umgredgss 28658 edgupgr 28659 uhgrvtxedgiedgb 28661 upgredg 28662 usgredgss 28684 ausgrumgri 28692 ausgrusgri 28693 uspgrf1oedg 28698 uspgrupgrushgr 28702 usgrumgruspgr 28705 usgruspgrb 28706 usgrf1oedg 28729 uhgr2edg 28730 usgrsizedg 28737 usgredg3 28738 ushgredgedg 28751 ushgredgedgloop 28753 usgr1e 28767 edg0usgr 28775 usgr1v0edg 28779 usgrexmpledg 28784 subgrprop3 28798 0grsubgr 28800 0uhgrsubgr 28801 subgruhgredgd 28806 uhgrspansubgrlem 28812 uhgrspan1 28825 upgrres1 28835 usgredgffibi 28846 dfnbgr3 28860 nbupgrres 28886 usgrnbcnvfv 28887 cplgrop 28959 cusgrexi 28965 structtocusgr 28968 cusgrsize 28976 1loopgredg 29023 1egrvtxdg0 29033 umgr2v2eedg 29046 edginwlk 29157 wlkl1loop 29160 wlkvtxedg 29166 uspgr2wlkeq 29168 wlkiswwlks1 29386 wlkiswwlks2lem4 29391 wlkiswwlks2lem5 29392 wlkiswwlks2 29394 wlkiswwlksupgr2 29396 2pthon3v 29462 umgrwwlks2on 29476 clwlkclwwlk 29520 lfuhgr 34404 loop1cycl 34424 isomushgr 46794 ushrisomgr 46809 |
Copyright terms: Public domain | W3C validator |