![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > edgval | Structured version Visualization version GIF version |
Description: The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
Ref | Expression |
---|---|
edgval | ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . . 4 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
2 | 1 | rneqd 5938 | . . 3 ⊢ (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
3 | df-edg 28339 | . . 3 ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | |
4 | fvex 6905 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
5 | 4 | rnex 7903 | . . 3 ⊢ ran (iEdg‘𝐺) ∈ V |
6 | 2, 3, 5 | fvmpt 6999 | . 2 ⊢ (𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
7 | rn0 5926 | . . . 4 ⊢ ran ∅ = ∅ | |
8 | 7 | a1i 11 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran ∅ = ∅) |
9 | fvprc 6884 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
10 | 9 | rneqd 5938 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran (iEdg‘𝐺) = ran ∅) |
11 | fvprc 6884 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ∅) | |
12 | 8, 10, 11 | 3eqtr4rd 2784 | . 2 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
13 | 6, 12 | pm2.61i 182 | 1 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4323 ran crn 5678 ‘cfv 6544 iEdgciedg 28288 Edgcedg 28338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-edg 28339 |
This theorem is referenced by: iedgedg 28341 edgopval 28342 edgstruct 28344 edgiedgb 28345 edg0iedg0 28346 uhgredgn0 28419 upgredgss 28423 umgredgss 28424 edgupgr 28425 uhgrvtxedgiedgb 28427 upgredg 28428 usgredgss 28450 ausgrumgri 28458 ausgrusgri 28459 uspgrf1oedg 28464 uspgrupgrushgr 28468 usgrumgruspgr 28471 usgruspgrb 28472 usgrf1oedg 28495 uhgr2edg 28496 usgrsizedg 28503 usgredg3 28504 ushgredgedg 28517 ushgredgedgloop 28519 usgr1e 28533 edg0usgr 28541 usgr1v0edg 28545 usgrexmpledg 28550 subgrprop3 28564 0grsubgr 28566 0uhgrsubgr 28567 subgruhgredgd 28572 uhgrspansubgrlem 28578 uhgrspan1 28591 upgrres1 28601 usgredgffibi 28612 dfnbgr3 28626 nbupgrres 28652 usgrnbcnvfv 28653 cplgrop 28725 cusgrexi 28731 structtocusgr 28734 cusgrsize 28742 1loopgredg 28789 1egrvtxdg0 28799 umgr2v2eedg 28812 edginwlk 28923 wlkl1loop 28926 wlkvtxedg 28932 uspgr2wlkeq 28934 wlkiswwlks1 29152 wlkiswwlks2lem4 29157 wlkiswwlks2lem5 29158 wlkiswwlks2 29160 wlkiswwlksupgr2 29162 2pthon3v 29228 umgrwwlks2on 29242 clwlkclwwlk 29286 lfuhgr 34139 loop1cycl 34159 isomushgr 46542 ushrisomgr 46557 |
Copyright terms: Public domain | W3C validator |