Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > edgval | Structured version Visualization version GIF version |
Description: The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
Ref | Expression |
---|---|
edgval | ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . 4 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
2 | 1 | rneqd 5836 | . . 3 ⊢ (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
3 | df-edg 27321 | . . 3 ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | |
4 | fvex 6769 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
5 | 4 | rnex 7733 | . . 3 ⊢ ran (iEdg‘𝐺) ∈ V |
6 | 2, 3, 5 | fvmpt 6857 | . 2 ⊢ (𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
7 | rn0 5824 | . . . 4 ⊢ ran ∅ = ∅ | |
8 | 7 | a1i 11 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran ∅ = ∅) |
9 | fvprc 6748 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
10 | 9 | rneqd 5836 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran (iEdg‘𝐺) = ran ∅) |
11 | fvprc 6748 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ∅) | |
12 | 8, 10, 11 | 3eqtr4rd 2789 | . 2 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
13 | 6, 12 | pm2.61i 182 | 1 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ran crn 5581 ‘cfv 6418 iEdgciedg 27270 Edgcedg 27320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-edg 27321 |
This theorem is referenced by: iedgedg 27323 edgopval 27324 edgstruct 27326 edgiedgb 27327 edg0iedg0 27328 uhgredgn0 27401 upgredgss 27405 umgredgss 27406 edgupgr 27407 uhgrvtxedgiedgb 27409 upgredg 27410 usgredgss 27432 ausgrumgri 27440 ausgrusgri 27441 uspgrf1oedg 27446 uspgrupgrushgr 27450 usgrumgruspgr 27453 usgruspgrb 27454 usgrf1oedg 27477 uhgr2edg 27478 usgrsizedg 27485 usgredg3 27486 ushgredgedg 27499 ushgredgedgloop 27501 usgr1e 27515 edg0usgr 27523 usgr1v0edg 27527 usgrexmpledg 27532 subgrprop3 27546 0grsubgr 27548 0uhgrsubgr 27549 subgruhgredgd 27554 uhgrspansubgrlem 27560 uhgrspan1 27573 upgrres1 27583 usgredgffibi 27594 dfnbgr3 27608 nbupgrres 27634 usgrnbcnvfv 27635 cplgrop 27707 cusgrexi 27713 structtocusgr 27716 cusgrsize 27724 1loopgredg 27771 1egrvtxdg0 27781 umgr2v2eedg 27794 edginwlk 27904 wlkl1loop 27907 wlkvtxedg 27913 uspgr2wlkeq 27915 wlkiswwlks1 28133 wlkiswwlks2lem4 28138 wlkiswwlks2lem5 28139 wlkiswwlks2 28141 wlkiswwlksupgr2 28143 2pthon3v 28209 umgrwwlks2on 28223 clwlkclwwlk 28267 lfuhgr 32979 loop1cycl 32999 isomushgr 45166 ushrisomgr 45181 |
Copyright terms: Public domain | W3C validator |