| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > edgval | Structured version Visualization version GIF version | ||
| Description: The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| edgval | ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . . 4 ⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) | |
| 2 | 1 | rneqd 5918 | . . 3 ⊢ (𝑔 = 𝐺 → ran (iEdg‘𝑔) = ran (iEdg‘𝐺)) |
| 3 | df-edg 29027 | . . 3 ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) | |
| 4 | fvex 6889 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
| 5 | 4 | rnex 7906 | . . 3 ⊢ ran (iEdg‘𝐺) ∈ V |
| 6 | 2, 3, 5 | fvmpt 6986 | . 2 ⊢ (𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 7 | rn0 5905 | . . . 4 ⊢ ran ∅ = ∅ | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran ∅ = ∅) |
| 9 | fvprc 6868 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
| 10 | 9 | rneqd 5918 | . . 3 ⊢ (¬ 𝐺 ∈ V → ran (iEdg‘𝐺) = ran ∅) |
| 11 | fvprc 6868 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ∅) | |
| 12 | 8, 10, 11 | 3eqtr4rd 2781 | . 2 ⊢ (¬ 𝐺 ∈ V → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 13 | 6, 12 | pm2.61i 182 | 1 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 ran crn 5655 ‘cfv 6531 iEdgciedg 28976 Edgcedg 29026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-edg 29027 |
| This theorem is referenced by: iedgedg 29029 edgopval 29030 edgstruct 29032 edgiedgb 29033 edg0iedg0 29034 uhgredgn0 29107 upgredgss 29111 umgredgss 29112 edgupgr 29113 uhgrvtxedgiedgb 29115 upgredg 29116 usgredgss 29138 ausgrumgri 29146 ausgrusgri 29147 uspgrf1oedg 29152 uspgrupgrushgr 29158 usgrumgruspgr 29161 usgruspgrb 29162 usgrf1oedg 29186 uhgr2edg 29187 usgrsizedg 29194 usgredg3 29195 ushgredgedg 29208 ushgredgedgloop 29210 usgr1e 29224 edg0usgr 29232 usgr1v0edg 29236 usgrexmpledg 29241 subgrprop3 29255 0grsubgr 29257 0uhgrsubgr 29258 subgruhgredgd 29263 uhgrspansubgrlem 29269 uhgrspan1 29282 upgrres1 29292 usgredgffibi 29303 dfnbgr3 29317 nbupgrres 29343 usgrnbcnvfv 29344 cplgrop 29416 cusgrexi 29422 structtocusgr 29425 cusgrsize 29434 1loopgredg 29481 1egrvtxdg0 29491 umgr2v2eedg 29504 edginwlk 29615 wlkl1loop 29618 wlkvtxedg 29624 uspgr2wlkeq 29626 wlkiswwlks1 29849 wlkiswwlks2lem4 29854 wlkiswwlks2lem5 29855 wlkiswwlks2 29857 wlkiswwlksupgr2 29859 2pthon3v 29925 umgrwwlks2on 29939 clwlkclwwlk 29983 lfuhgr 35140 loop1cycl 35159 dfclnbgr3 47840 isubgredgss 47878 isubgredg 47879 isuspgrim0lem 47906 upgrimtrlslem2 47918 gricushgr 47930 ushggricedg 47940 stgredg 47968 usgrexmpl1edg 48028 usgrexmpl2edg 48033 gpgedg 48049 |
| Copyright terms: Public domain | W3C validator |