![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1stval | Structured version Visualization version GIF version |
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
1stval | ⊢ (1st ‘𝐴) = ∪ dom {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4642 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | dmeqd 5912 | . . . 4 ⊢ (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴}) |
3 | 2 | unieqd 4925 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ dom {𝑥} = ∪ dom {𝐴}) |
4 | df-1st 7999 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
5 | snex 5437 | . . . . 5 ⊢ {𝐴} ∈ V | |
6 | 5 | dmex 7923 | . . . 4 ⊢ dom {𝐴} ∈ V |
7 | 6 | uniex 7752 | . . 3 ⊢ ∪ dom {𝐴} ∈ V |
8 | 3, 4, 7 | fvmpt 7010 | . 2 ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) |
9 | fvprc 6894 | . . 3 ⊢ (¬ 𝐴 ∈ V → (1st ‘𝐴) = ∅) | |
10 | snprc 4726 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
11 | 10 | biimpi 215 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
12 | 11 | dmeqd 5912 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → dom {𝐴} = dom ∅) |
13 | dm0 5927 | . . . . . 6 ⊢ dom ∅ = ∅ | |
14 | 12, 13 | eqtrdi 2784 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → dom {𝐴} = ∅) |
15 | 14 | unieqd 4925 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ∪ dom {𝐴} = ∪ ∅) |
16 | uni0 4942 | . . . 4 ⊢ ∪ ∅ = ∅ | |
17 | 15, 16 | eqtrdi 2784 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∪ dom {𝐴} = ∅) |
18 | 9, 17 | eqtr4d 2771 | . 2 ⊢ (¬ 𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) |
19 | 8, 18 | pm2.61i 182 | 1 ⊢ (1st ‘𝐴) = ∪ dom {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ∅c0 4326 {csn 4632 ∪ cuni 4912 dom cdm 5682 ‘cfv 6553 1st c1st 7997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-iota 6505 df-fun 6555 df-fv 6561 df-1st 7999 |
This theorem is referenced by: 1stnpr 8003 1st0 8005 op1st 8007 1st2val 8027 elxp6 8033 mpoxopxnop0 8227 |
Copyright terms: Public domain | W3C validator |