MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stval Structured version   Visualization version   GIF version

Theorem 1stval 7923
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
1stval (1st𝐴) = dom {𝐴}

Proof of Theorem 1stval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4586 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21dmeqd 5845 . . . 4 (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴})
32unieqd 4872 . . 3 (𝑥 = 𝐴 dom {𝑥} = dom {𝐴})
4 df-1st 7921 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
5 snex 5374 . . . . 5 {𝐴} ∈ V
65dmex 7839 . . . 4 dom {𝐴} ∈ V
76uniex 7674 . . 3 dom {𝐴} ∈ V
83, 4, 7fvmpt 6929 . 2 (𝐴 ∈ V → (1st𝐴) = dom {𝐴})
9 fvprc 6814 . . 3 𝐴 ∈ V → (1st𝐴) = ∅)
10 snprc 4670 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
1110biimpi 216 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
1211dmeqd 5845 . . . . . 6 𝐴 ∈ V → dom {𝐴} = dom ∅)
13 dm0 5860 . . . . . 6 dom ∅ = ∅
1412, 13eqtrdi 2782 . . . . 5 𝐴 ∈ V → dom {𝐴} = ∅)
1514unieqd 4872 . . . 4 𝐴 ∈ V → dom {𝐴} = ∅)
16 uni0 4887 . . . 4 ∅ = ∅
1715, 16eqtrdi 2782 . . 3 𝐴 ∈ V → dom {𝐴} = ∅)
189, 17eqtr4d 2769 . 2 𝐴 ∈ V → (1st𝐴) = dom {𝐴})
198, 18pm2.61i 182 1 (1st𝐴) = dom {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283  {csn 4576   cuni 4859  dom cdm 5616  cfv 6481  1st c1st 7919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-1st 7921
This theorem is referenced by:  1stnpr  7925  1st0  7927  op1st  7929  1st2val  7949  elxp6  7955  mpoxopxnop0  8145
  Copyright terms: Public domain W3C validator