MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stval Structured version   Visualization version   GIF version

Theorem 1stval 7973
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
1stval (1st𝐴) = dom {𝐴}

Proof of Theorem 1stval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4633 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21dmeqd 5898 . . . 4 (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴})
32unieqd 4915 . . 3 (𝑥 = 𝐴 dom {𝑥} = dom {𝐴})
4 df-1st 7971 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
5 snex 5424 . . . . 5 {𝐴} ∈ V
65dmex 7898 . . . 4 dom {𝐴} ∈ V
76uniex 7727 . . 3 dom {𝐴} ∈ V
83, 4, 7fvmpt 6991 . 2 (𝐴 ∈ V → (1st𝐴) = dom {𝐴})
9 fvprc 6876 . . 3 𝐴 ∈ V → (1st𝐴) = ∅)
10 snprc 4716 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
1110biimpi 215 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
1211dmeqd 5898 . . . . . 6 𝐴 ∈ V → dom {𝐴} = dom ∅)
13 dm0 5913 . . . . . 6 dom ∅ = ∅
1412, 13eqtrdi 2782 . . . . 5 𝐴 ∈ V → dom {𝐴} = ∅)
1514unieqd 4915 . . . 4 𝐴 ∈ V → dom {𝐴} = ∅)
16 uni0 4932 . . . 4 ∅ = ∅
1715, 16eqtrdi 2782 . . 3 𝐴 ∈ V → dom {𝐴} = ∅)
189, 17eqtr4d 2769 . 2 𝐴 ∈ V → (1st𝐴) = dom {𝐴})
198, 18pm2.61i 182 1 (1st𝐴) = dom {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2098  Vcvv 3468  c0 4317  {csn 4623   cuni 4902  dom cdm 5669  cfv 6536  1st c1st 7969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-iota 6488  df-fun 6538  df-fv 6544  df-1st 7971
This theorem is referenced by:  1stnpr  7975  1st0  7977  op1st  7979  1st2val  7999  elxp6  8005  mpoxopxnop0  8198
  Copyright terms: Public domain W3C validator