MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stval Structured version   Visualization version   GIF version

Theorem 1stval 8017
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
1stval (1st𝐴) = dom {𝐴}

Proof of Theorem 1stval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4635 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21dmeqd 5915 . . . 4 (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴})
32unieqd 4919 . . 3 (𝑥 = 𝐴 dom {𝑥} = dom {𝐴})
4 df-1st 8015 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
5 snex 5435 . . . . 5 {𝐴} ∈ V
65dmex 7932 . . . 4 dom {𝐴} ∈ V
76uniex 7762 . . 3 dom {𝐴} ∈ V
83, 4, 7fvmpt 7015 . 2 (𝐴 ∈ V → (1st𝐴) = dom {𝐴})
9 fvprc 6897 . . 3 𝐴 ∈ V → (1st𝐴) = ∅)
10 snprc 4716 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
1110biimpi 216 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
1211dmeqd 5915 . . . . . 6 𝐴 ∈ V → dom {𝐴} = dom ∅)
13 dm0 5930 . . . . . 6 dom ∅ = ∅
1412, 13eqtrdi 2792 . . . . 5 𝐴 ∈ V → dom {𝐴} = ∅)
1514unieqd 4919 . . . 4 𝐴 ∈ V → dom {𝐴} = ∅)
16 uni0 4934 . . . 4 ∅ = ∅
1715, 16eqtrdi 2792 . . 3 𝐴 ∈ V → dom {𝐴} = ∅)
189, 17eqtr4d 2779 . 2 𝐴 ∈ V → (1st𝐴) = dom {𝐴})
198, 18pm2.61i 182 1 (1st𝐴) = dom {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2107  Vcvv 3479  c0 4332  {csn 4625   cuni 4906  dom cdm 5684  cfv 6560  1st c1st 8013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6513  df-fun 6562  df-fv 6568  df-1st 8015
This theorem is referenced by:  1stnpr  8019  1st0  8021  op1st  8023  1st2val  8043  elxp6  8049  mpoxopxnop0  8241
  Copyright terms: Public domain W3C validator