MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stval Structured version   Visualization version   GIF version

Theorem 1stval 7995
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
1stval (1st𝐴) = dom {𝐴}

Proof of Theorem 1stval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4616 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21dmeqd 5890 . . . 4 (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴})
32unieqd 4901 . . 3 (𝑥 = 𝐴 dom {𝑥} = dom {𝐴})
4 df-1st 7993 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
5 snex 5411 . . . . 5 {𝐴} ∈ V
65dmex 7910 . . . 4 dom {𝐴} ∈ V
76uniex 7740 . . 3 dom {𝐴} ∈ V
83, 4, 7fvmpt 6991 . 2 (𝐴 ∈ V → (1st𝐴) = dom {𝐴})
9 fvprc 6873 . . 3 𝐴 ∈ V → (1st𝐴) = ∅)
10 snprc 4698 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
1110biimpi 216 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
1211dmeqd 5890 . . . . . 6 𝐴 ∈ V → dom {𝐴} = dom ∅)
13 dm0 5905 . . . . . 6 dom ∅ = ∅
1412, 13eqtrdi 2787 . . . . 5 𝐴 ∈ V → dom {𝐴} = ∅)
1514unieqd 4901 . . . 4 𝐴 ∈ V → dom {𝐴} = ∅)
16 uni0 4916 . . . 4 ∅ = ∅
1715, 16eqtrdi 2787 . . 3 𝐴 ∈ V → dom {𝐴} = ∅)
189, 17eqtr4d 2774 . 2 𝐴 ∈ V → (1st𝐴) = dom {𝐴})
198, 18pm2.61i 182 1 (1st𝐴) = dom {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  {csn 4606   cuni 4888  dom cdm 5659  cfv 6536  1st c1st 7991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-1st 7993
This theorem is referenced by:  1stnpr  7997  1st0  7999  op1st  8001  1st2val  8021  elxp6  8027  mpoxopxnop0  8219
  Copyright terms: Public domain W3C validator