![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1stval | Structured version Visualization version GIF version |
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
1stval | ⊢ (1st ‘𝐴) = ∪ dom {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4633 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | dmeqd 5898 | . . . 4 ⊢ (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴}) |
3 | 2 | unieqd 4915 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ dom {𝑥} = ∪ dom {𝐴}) |
4 | df-1st 7971 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
5 | snex 5424 | . . . . 5 ⊢ {𝐴} ∈ V | |
6 | 5 | dmex 7898 | . . . 4 ⊢ dom {𝐴} ∈ V |
7 | 6 | uniex 7727 | . . 3 ⊢ ∪ dom {𝐴} ∈ V |
8 | 3, 4, 7 | fvmpt 6991 | . 2 ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) |
9 | fvprc 6876 | . . 3 ⊢ (¬ 𝐴 ∈ V → (1st ‘𝐴) = ∅) | |
10 | snprc 4716 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
11 | 10 | biimpi 215 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
12 | 11 | dmeqd 5898 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → dom {𝐴} = dom ∅) |
13 | dm0 5913 | . . . . . 6 ⊢ dom ∅ = ∅ | |
14 | 12, 13 | eqtrdi 2782 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → dom {𝐴} = ∅) |
15 | 14 | unieqd 4915 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ∪ dom {𝐴} = ∪ ∅) |
16 | uni0 4932 | . . . 4 ⊢ ∪ ∅ = ∅ | |
17 | 15, 16 | eqtrdi 2782 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∪ dom {𝐴} = ∅) |
18 | 9, 17 | eqtr4d 2769 | . 2 ⊢ (¬ 𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) |
19 | 8, 18 | pm2.61i 182 | 1 ⊢ (1st ‘𝐴) = ∪ dom {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ∅c0 4317 {csn 4623 ∪ cuni 4902 dom cdm 5669 ‘cfv 6536 1st c1st 7969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6488 df-fun 6538 df-fv 6544 df-1st 7971 |
This theorem is referenced by: 1stnpr 7975 1st0 7977 op1st 7979 1st2val 7999 elxp6 8005 mpoxopxnop0 8198 |
Copyright terms: Public domain | W3C validator |