MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stval Structured version   Visualization version   GIF version

Theorem 1stval 7691
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
1stval (1st𝐴) = dom {𝐴}

Proof of Theorem 1stval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4577 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21dmeqd 5774 . . . 4 (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴})
32unieqd 4852 . . 3 (𝑥 = 𝐴 dom {𝑥} = dom {𝐴})
4 df-1st 7689 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
5 snex 5332 . . . . 5 {𝐴} ∈ V
65dmex 7616 . . . 4 dom {𝐴} ∈ V
76uniex 7467 . . 3 dom {𝐴} ∈ V
83, 4, 7fvmpt 6768 . 2 (𝐴 ∈ V → (1st𝐴) = dom {𝐴})
9 fvprc 6663 . . 3 𝐴 ∈ V → (1st𝐴) = ∅)
10 snprc 4653 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
1110biimpi 218 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
1211dmeqd 5774 . . . . . 6 𝐴 ∈ V → dom {𝐴} = dom ∅)
13 dm0 5790 . . . . . 6 dom ∅ = ∅
1412, 13syl6eq 2872 . . . . 5 𝐴 ∈ V → dom {𝐴} = ∅)
1514unieqd 4852 . . . 4 𝐴 ∈ V → dom {𝐴} = ∅)
16 uni0 4866 . . . 4 ∅ = ∅
1715, 16syl6eq 2872 . . 3 𝐴 ∈ V → dom {𝐴} = ∅)
189, 17eqtr4d 2859 . 2 𝐴 ∈ V → (1st𝐴) = dom {𝐴})
198, 18pm2.61i 184 1 (1st𝐴) = dom {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2114  Vcvv 3494  c0 4291  {csn 4567   cuni 4838  dom cdm 5555  cfv 6355  1st c1st 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fv 6363  df-1st 7689
This theorem is referenced by:  1stnpr  7693  1st0  7695  op1st  7697  1st2val  7717  elxp6  7723  mpoxopxnop0  7881
  Copyright terms: Public domain W3C validator