MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stval Structured version   Visualization version   GIF version

Theorem 1stval 7806
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
1stval (1st𝐴) = dom {𝐴}

Proof of Theorem 1stval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4568 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21dmeqd 5803 . . . 4 (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴})
32unieqd 4850 . . 3 (𝑥 = 𝐴 dom {𝑥} = dom {𝐴})
4 df-1st 7804 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
5 snex 5349 . . . . 5 {𝐴} ∈ V
65dmex 7732 . . . 4 dom {𝐴} ∈ V
76uniex 7572 . . 3 dom {𝐴} ∈ V
83, 4, 7fvmpt 6857 . 2 (𝐴 ∈ V → (1st𝐴) = dom {𝐴})
9 fvprc 6748 . . 3 𝐴 ∈ V → (1st𝐴) = ∅)
10 snprc 4650 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
1110biimpi 215 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
1211dmeqd 5803 . . . . . 6 𝐴 ∈ V → dom {𝐴} = dom ∅)
13 dm0 5818 . . . . . 6 dom ∅ = ∅
1412, 13eqtrdi 2795 . . . . 5 𝐴 ∈ V → dom {𝐴} = ∅)
1514unieqd 4850 . . . 4 𝐴 ∈ V → dom {𝐴} = ∅)
16 uni0 4866 . . . 4 ∅ = ∅
1715, 16eqtrdi 2795 . . 3 𝐴 ∈ V → dom {𝐴} = ∅)
189, 17eqtr4d 2781 . 2 𝐴 ∈ V → (1st𝐴) = dom {𝐴})
198, 18pm2.61i 182 1 (1st𝐴) = dom {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  {csn 4558   cuni 4836  dom cdm 5580  cfv 6418  1st c1st 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804
This theorem is referenced by:  1stnpr  7808  1st0  7810  op1st  7812  1st2val  7832  elxp6  7838  mpoxopxnop0  8002
  Copyright terms: Public domain W3C validator