MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stval Structured version   Visualization version   GIF version

Theorem 1stval 7833
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
1stval (1st𝐴) = dom {𝐴}

Proof of Theorem 1stval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4571 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21dmeqd 5814 . . . 4 (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴})
32unieqd 4853 . . 3 (𝑥 = 𝐴 dom {𝑥} = dom {𝐴})
4 df-1st 7831 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
5 snex 5354 . . . . 5 {𝐴} ∈ V
65dmex 7758 . . . 4 dom {𝐴} ∈ V
76uniex 7594 . . 3 dom {𝐴} ∈ V
83, 4, 7fvmpt 6875 . 2 (𝐴 ∈ V → (1st𝐴) = dom {𝐴})
9 fvprc 6766 . . 3 𝐴 ∈ V → (1st𝐴) = ∅)
10 snprc 4653 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
1110biimpi 215 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
1211dmeqd 5814 . . . . . 6 𝐴 ∈ V → dom {𝐴} = dom ∅)
13 dm0 5829 . . . . . 6 dom ∅ = ∅
1412, 13eqtrdi 2794 . . . . 5 𝐴 ∈ V → dom {𝐴} = ∅)
1514unieqd 4853 . . . 4 𝐴 ∈ V → dom {𝐴} = ∅)
16 uni0 4869 . . . 4 ∅ = ∅
1715, 16eqtrdi 2794 . . 3 𝐴 ∈ V → dom {𝐴} = ∅)
189, 17eqtr4d 2781 . 2 𝐴 ∈ V → (1st𝐴) = dom {𝐴})
198, 18pm2.61i 182 1 (1st𝐴) = dom {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  {csn 4561   cuni 4839  dom cdm 5589  cfv 6433  1st c1st 7829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-1st 7831
This theorem is referenced by:  1stnpr  7835  1st0  7837  op1st  7839  1st2val  7859  elxp6  7865  mpoxopxnop0  8031
  Copyright terms: Public domain W3C validator