MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stval Structured version   Visualization version   GIF version

Theorem 1stval 7933
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
1stval (1st𝐴) = dom {𝐴}

Proof of Theorem 1stval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4589 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21dmeqd 5852 . . . 4 (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴})
32unieqd 4874 . . 3 (𝑥 = 𝐴 dom {𝑥} = dom {𝐴})
4 df-1st 7931 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
5 snex 5378 . . . . 5 {𝐴} ∈ V
65dmex 7849 . . . 4 dom {𝐴} ∈ V
76uniex 7681 . . 3 dom {𝐴} ∈ V
83, 4, 7fvmpt 6934 . 2 (𝐴 ∈ V → (1st𝐴) = dom {𝐴})
9 fvprc 6818 . . 3 𝐴 ∈ V → (1st𝐴) = ∅)
10 snprc 4671 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
1110biimpi 216 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
1211dmeqd 5852 . . . . . 6 𝐴 ∈ V → dom {𝐴} = dom ∅)
13 dm0 5867 . . . . . 6 dom ∅ = ∅
1412, 13eqtrdi 2780 . . . . 5 𝐴 ∈ V → dom {𝐴} = ∅)
1514unieqd 4874 . . . 4 𝐴 ∈ V → dom {𝐴} = ∅)
16 uni0 4889 . . . 4 ∅ = ∅
1715, 16eqtrdi 2780 . . 3 𝐴 ∈ V → dom {𝐴} = ∅)
189, 17eqtr4d 2767 . 2 𝐴 ∈ V → (1st𝐴) = dom {𝐴})
198, 18pm2.61i 182 1 (1st𝐴) = dom {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3438  c0 4286  {csn 4579   cuni 4861  dom cdm 5623  cfv 6486  1st c1st 7929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fv 6494  df-1st 7931
This theorem is referenced by:  1stnpr  7935  1st0  7937  op1st  7939  1st2val  7959  elxp6  7965  mpoxopxnop0  8155
  Copyright terms: Public domain W3C validator