Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1stval | Structured version Visualization version GIF version |
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
1stval | ⊢ (1st ‘𝐴) = ∪ dom {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4568 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | dmeqd 5803 | . . . 4 ⊢ (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴}) |
3 | 2 | unieqd 4850 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ dom {𝑥} = ∪ dom {𝐴}) |
4 | df-1st 7804 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
5 | snex 5349 | . . . . 5 ⊢ {𝐴} ∈ V | |
6 | 5 | dmex 7732 | . . . 4 ⊢ dom {𝐴} ∈ V |
7 | 6 | uniex 7572 | . . 3 ⊢ ∪ dom {𝐴} ∈ V |
8 | 3, 4, 7 | fvmpt 6857 | . 2 ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) |
9 | fvprc 6748 | . . 3 ⊢ (¬ 𝐴 ∈ V → (1st ‘𝐴) = ∅) | |
10 | snprc 4650 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
11 | 10 | biimpi 215 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
12 | 11 | dmeqd 5803 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → dom {𝐴} = dom ∅) |
13 | dm0 5818 | . . . . . 6 ⊢ dom ∅ = ∅ | |
14 | 12, 13 | eqtrdi 2795 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → dom {𝐴} = ∅) |
15 | 14 | unieqd 4850 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ∪ dom {𝐴} = ∪ ∅) |
16 | uni0 4866 | . . . 4 ⊢ ∪ ∅ = ∅ | |
17 | 15, 16 | eqtrdi 2795 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∪ dom {𝐴} = ∅) |
18 | 9, 17 | eqtr4d 2781 | . 2 ⊢ (¬ 𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) |
19 | 8, 18 | pm2.61i 182 | 1 ⊢ (1st ‘𝐴) = ∪ dom {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 {csn 4558 ∪ cuni 4836 dom cdm 5580 ‘cfv 6418 1st c1st 7802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-1st 7804 |
This theorem is referenced by: 1stnpr 7808 1st0 7810 op1st 7812 1st2val 7832 elxp6 7838 mpoxopxnop0 8002 |
Copyright terms: Public domain | W3C validator |