![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2onnALT | Structured version Visualization version GIF version |
Description: Shorter proof of 2onn 8656 using Peano's postulates that depends on ax-un 7734. (Contributed by NM, 28-Sep-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2onnALT | ⊢ 2o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8481 | . 2 ⊢ 2o = suc 1o | |
2 | 1onn 8654 | . . 3 ⊢ 1o ∈ ω | |
3 | peano2 7890 | . . 3 ⊢ (1o ∈ ω → suc 1o ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 1o ∈ ω |
5 | 1, 4 | eqeltri 2824 | 1 ⊢ 2o ∈ ω |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 suc csuc 6365 ωcom 7864 1oc1o 8473 2oc2o 8474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-tr 5260 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-om 7865 df-1o 8480 df-2o 8481 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |