MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2onnALT Structured version   Visualization version   GIF version

Theorem 2onnALT 8648
Description: Shorter proof of 2onn 8647 using Peano's postulates that depends on ax-un 7729. (Contributed by NM, 28-Sep-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2onnALT 2o ∈ ω

Proof of Theorem 2onnALT
StepHypRef Expression
1 df-2o 8473 . 2 2o = suc 1o
2 1onn 8645 . . 3 1o ∈ ω
3 peano2 7885 . . 3 (1o ∈ ω → suc 1o ∈ ω)
42, 3ax-mp 5 . 2 suc 1o ∈ ω
51, 4eqeltri 2828 1 2o ∈ ω
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  suc csuc 6366  ωcom 7859  1oc1o 8465  2oc2o 8466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-om 7860  df-1o 8472  df-2o 8473
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator