MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2onnALT Structured version   Visualization version   GIF version

Theorem 2onnALT 8699
Description: Shorter proof of 2onn 8698 using Peano's postulates that depends on ax-un 7770. (Contributed by NM, 28-Sep-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2onnALT 2o ∈ ω

Proof of Theorem 2onnALT
StepHypRef Expression
1 df-2o 8523 . 2 2o = suc 1o
2 1onn 8696 . . 3 1o ∈ ω
3 peano2 7929 . . 3 (1o ∈ ω → suc 1o ∈ ω)
42, 3ax-mp 5 . 2 suc 1o ∈ ω
51, 4eqeltri 2840 1 2o ∈ ω
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  suc csuc 6397  ωcom 7903  1oc1o 8515  2oc2o 8516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-om 7904  df-1o 8522  df-2o 8523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator